DRAINAGE CONCEPT REPORT 115TH AVENUE - GILA RIVER BRIDGE TO MC 85 (WO #80518)

Prepared for:

MARICOPA COUNTY DEPARTMENT OF TRANSPORTATION

Prepared by:

Subconsultant to: Parsons Brinckerhoff

March 24, 1998

DRAINAGE CONCEPT REPORT 115^{TH} AVENUE - GILA RIVER BRIDGE TO MC 85

TABLE OF CONTENTS

I.	INTR	ODUCTION
	A.	General
	B.	Study Area
П.	DESI	GN CRITERIA
	A.	On-site Drainage Criteria
	В.	Off-site Drainage Criteria
III.	MET	HODOLOGY
	A.	Hydrology
	В.	Hydraulics
	C.	Alternatives Analysis
IV.	RESU	JLTS & RECOMMENDATIONS
	A.	On-site Drainage
	В.	Alternatives Analysis
		1. Existing Conditions
		2. Alternative 1 - Detention
		3. Alternative 2 - 100-year Conveyance
	~	4. Alternative 3 - 10-year Conveyance
	C.	Estimated Costs
	D.	Joint Project Recommendations
		LIST OF FIGURES
Figur	e 1 - Pr	oject Location
		rainage Subareas
Figur	e 3 - O	n-site Drainage Flow Paths
Figur	e 4 - Al	ternative 1 - Detention
Figur	e 5 - Al	ternative 2 - 100-yr Conveyance
Figur	e <mark>6 - Al</mark>	ternative 3 - 10-yr Conveyance
		<u>LIST OF TABLES</u>
Table	1 - Pea	ık Discharge Summary
		st Summary

DRAINAGE CONCEPT REPORT 115TH AVENUE - GILA RIVER BRIDGE TO MC 85

I. INTRODUCTION

A. General

This Drainage Concept Report is prepared for the Maricopa County Department of Transportation as part of the Improvement Study for 115th Avenue from the Gila River Bridge north to MC 85 (Buckeye Road). The project consists of analysis of the runoff generated within the road right-of-way area and off-site runoff reaching the roadway. Alternative drainage concepts are presented along with estimated construction costs. The project location is shown on **Figure 1**.

B. Study Area

The study area is characterized predominantly by agricultural land use. Residential development is beginning to replace agriculture in some locations and is expected to continue to replace the agricultural environment. The area is situated between the Agua Fria and Gila Rivers near their confluence. During high flows in the Gila River a portion of the area is subject to overbank flooding. The area is within the Salt River Valley Water Users Association (SRVWUA), Salt River Project (SRP) irrigation service area and is near the downstream end of the system. There is a large tailwater canal that traverses the area, flowing generally from east to west, referred to as the Buckeye Feeder Canal. The Buckeye Feeder Canal is aligned along a low-lying area that receives storm water runoff from the north and the south. The Canal flows adjacent to the east side of 115th Avenue for one mile before continuing west to the River. During storm events, runoff reaching the Buckeye Feeder Canal overtops the banks and flows overland toward 115th Avenue. Prior to reaching 115th Avenue the flow breaks out to the south resulting in flooding of several residences in its path. The runoff ponds along the east side of 115th Avenue before continuing west. The primary focus of the off-site drainage analysis is to identify solutions to the flooding problems along the Buckeye Feeder Canal from 107th Avenue to Dysart Road and more specifically in the vicinity of 115th Avenue. The study area identified for the Buckeye Feeder Canal analysis extends from 107th Avenue to Dysart Road and from Southern Avenue to Lower Buckeye Road. The study area is also shown on Figure 1.

Figure 1 - Project Location

II. DESIGN CRITERIA

6

Drainage criterion for use in Maricopa County are presented in *Drainage Design Manual for Maricopa County, Arizona, Volume II, Hydraulics*, prepared by the Flood Control District of Maricopa County. Roadway design guidelines are presented in *Roadway Design Manual* prepared by Maricopa County Department of Transportation. The following specific criteria are used in this analysis.

A. On-site Drainage Criteria

The planned roadway section is a rural section with no curb and gutter. Pavement drainage will therefore be collected in roadside swales on each side of the road and conveyed to a suitable outfall. The following criteria apply to roadside ditches:

- Roadside ditches are to be sized to prevent the 10-year storm runoff from saturating the pavement subgrade.
- Sideslopes are to be no steeper than 4 to 1 (H:V) within the roadway clear zone.
- ♦ Trapezoidal channel bottoms will be a minimum of 4 feet wide for maintenance purposes.

 V-shaped channels are allowed in lieu of a 4-foot trapezoidal channel.

B. Off-site Drainage Criteria

Off-site drainage criteria will apply to roadway culverts and channel improvements to the Buckeye Feeder Canal. The following criteria apply:

- Cross road culverts for collector and arterial streets are to be designed to convey at least the 50-year peak discharge with no flow crossing over the roadway. Additionally,
- ♦ The flow depth over the roadway will be limited to 0.5 feet for the 100-year peak discharge.
- Open channels will be provided with freeboard equal to .25 times the sum of flow depth and velocity head for the design flow, with a minimum of 1 foot for subcritical flow and 2 feet for supercritical flow channels.
- The Froude number for all channel types is limited to a maximum of 0.86. For concrete, shotcrete, and mortar lined channels, the additional range of $1.13 \le Fr \le 2.0$ is allowed.

III. METHODOLOGY

A. Hydrology

Hydrology for the study area is presented in *Floodplain Delineation of the Tolleson Area, Hydrology Report*, October 1996, prepared by Dibble & Associates for the Flood Control District of Maricopa County. The hydrology report is in draft form, but constitutes the best available information regarding the runoff characteristics within the study area.

The hydrology from the Tolleson Area study was prepared using procedures and criteria from Drainage Design Manual For Maricopa County, Arizona, Volume I, Hydrology and the Flood Control District of Maricopa County Drainage Design Menu System (DDMS) computer software. Modifications were made to the 100-year Tolleson model to more accurately reflect the aerial reduction in rainfall within the project area and to model the detention basins for the detention alternative. The 10-year flows are taken from a revised model provided by the FCDMC. The drainage subarea map from the Tolleson study is enclosed as Figure 2.

Hydrology for the on-site drainage is prepared using the rational method as presented in the Drainage Design Manual.

B. Hydraulics

Culverts and channels are initially sized using HDS-5, Hydraulic Design of Highway Culverts, for culverts, and manning's equation for channels using an n-value of 0.013 for concrete. Certain portions of the Buckeye Feeder Canal were subsequently modeled with StormPlus to evaluate the backwater effects of the closely spaced culverts along 115th Avenue and the transition effects at the culvert inlets and outlets. StormPlus is a hydraulic analysis system developed by the Los Angeles County Flood Control District.

Figure 2 - Drainage Subareas

C. Alternatives Analysis

 \dot{x}

Alternatives are developed to solve flooding problems associated with the Buckeye Feeder Canal. The Scope of Work identifies three alternatives to be considered:

- Diverting accumulated excess flows southerly along the 115th Avenue alignment to the Gila River.
- Increase conveyance of all roadway under crossings to accommodate all potential canal flows. This alternative is to include all crossings within the study area including the boundary roadways and extending to the canal drain located west of Dysart Road.
- ♦ Combination of drainage measures and techniques such as diverting flows, augmentation of culvert conveyance capacities, and use of retention or detention basins.

Alternatives for the on-site drainage analysis are developed in conjunction with the No build Alternative, the Medium Cost Alternative, and the Full Cost Alternative presented in the *Improvement Study Report*, which is a companion document prepared as part of this study.

IV. RESULTS & RECOMMENDATIONS

A. On-site Drainage

On-site drainage includes pavement drainage and the runoff falling within the right-of-way on the shoulder or earthen area. Pavement drainage will be directed to side ditches running parallel to the roadway on both sides.

Currently, no culverts convey runoff under 115th Avenue except at the Buckeye Feeder Canal near Atlanta Avenue.

On the east side of 115th Avenue from Buckeye Road to the Buckeye Feeder Canal, the runoff flows south in the roadside ditch. The runoff is conveyed under side roads in culverts. The roadside ditch outlets into the canal. Runoff from Durango Street also flows in the roadside channel. From Southern to Atlanta, the runoff flows north, also to the canal. From Southern to the Gila River, the flow is south in a roadside ditch.

On the west side of 115th Avenue from Buckeye Road to Lower Buckeye Road, the right-of-way drainage flows south in a roadside ditch and then turns west along the north side of Lower Buckeye Road. The drainage along the west side of 115th Avenue from Lower Buckeye Road to Roeser also flows south. The runoff is diverted to the west at the following locations: Elwood, 1/4 mile north of Broadway, at Broadway, and at Roeser. From Roeser to the Buckeye Feeder Canal, the right-of-way drainage flows south into the canal. The right-of-way drainage from Southern to the Buckeye Feeder Canal flows north into the canal. Finally, from Southern to the Gila River, the right-of-way runoff flows south to the river.

The intent of the right-of-way drainage scheme for future improvements is to continue these existing drainage patterns. Runoff originating on the east side of 115th Avenue will be conveyed to the Buckeye Feeder Canal or the Gila River. Runoff on the west side will be diverted at the locations defined above.

Figure 3 shows the on-site drainage flow paths and computed peak discharges for existing conditions and for the Medium and Full Cost alternatives. The rational method computation sheets are contained in the Appendix.

The following table presents the side road culverts. The sizes are based on the roadside drainage 10-year discharges. Roadside swales will be v-shaped and designed to convey the 10-year discharge without inundating the pavement subgrade.

Location	Size
Durango Street (West Side)	610 mm (24-inch)
Durango Street (East Side)	610 mm (24-inch)
Lower Buckeye Road (East Side)	610 mm (24-inch)
Elwood Street (East Side)	760 mm (30-inch)

The addition of pavement as part of the Medium and Full Cost alternatives will increase the 10-year runoff as shown on **Figure 3**. During higher return period storms such as the 25-, 50- or 100-year storms, the increase in runoff caused by the additional pavement is negligible or zero.

5

Figure 3 - On-site Drainage Flow Paths

B. Alternatives Analysis

r.

Based on review of the project hydrology, available detailed mapping, and field reconnaissance, the following alternatives were developed to relieve flooding problems along the Buckeye Feeder Canal. The alternatives are shown on **Figures 4**, 5, & 6. Culvert and channel hydraulic calculation sheets are contained in the **Appendix**.

1. Existing Conditions

From approximately 91st Avenue westerly to 115th Avenue, the Buckeye Feeder Canal flows along a low point in the terrain. The Canal is a drain utilized to collect irrigation tailwater from adjacent fields. The Canal flows adjacent to the east side of 115th Avenue for one mile before continuing west to the River. During a storm event, runoff reaches the canal from the north and the south. If runoff exceeds the capacity of the canal, it flows overland parallel to the canal to a point east of 115th Avenue. Within this area it is difficult to determine with much certainty how much flow is conveyed on either side of the canal. Prior to reaching 115th Avenue the flow breaks out to the south resulting in flooding of several residences in its path. The runoff ponds along the east side of 115th Avenue before continuing west. The channel has a relatively large cross-section. However, the capacity is limited by small culverts at road and driveway crossings. SRP is contracted to deliver a constant discharge of 40 cfs to the Buckeye Irrigation District through the Buckeye Feeder Canal. The existing conditions 10-year and 100-year peak discharges from the HEC-1 model are presented in Table 1 along with the reduced 100-year peak discharges resulting from the detention improvement alternative described below.

Table 1 - Peak Discharge Summary

Location Buckeye Feeder Canal (BFC)	HEC-1	Ex. Cond.	100-yr Q	Ex. Cond.
	ID	100-yr Q	W/Detention	10-yr Q
BFC East @ 115 th Ave	CPHB	1944 cfs	756 cfs	1088 cfs
BFC @ Broadway Rd	CPDA	2325 cfs	962 cfs	1240 cfs
BFC West @ 115 th Ave	CPCC	3068 cfs	1684 cfs	1593 cfs
BFC @ El Mirage Rd	CPCB	3205 cfs	*783 cfs	1667 cfs
BFC @ Dysart Rd	CPCA	3084 cfs	*893 cfs	1585 cfs

^{* -} Flow is from local runoff generated downstream from 115th Avenue.

A significant amount of runoff from the east and south reaches the Buckeye Canal at the point where it turns west at 115th Avenue. The SRP Voiter Ditch flows into the Buckeye Canal in this vicinity. The Voiter Ditch has a very low capacity and is expected to have little impact on the surface runoff during large storms.

The FEMA floodplain for the Gila River is shown on **Exhibits 4-6**. The floodplain extends as far north as Broadway Road within the study limits. As a result, the alternative drainage improvements presented in this report will be inundated during a 100 year flow event in the Gila River and will not function as designed. The hydraulic analysis and alternative development presented in this report is based on the assumption that the 10 and 100 year design storm events are centered over the watershed shown on **Figure 2** and that the Gila River is not contributing to flooding in the area.

2. Alternative 1 - Detention

15.

The detention alternative was originally intended to reduce 100-year peak discharges to a rate that could be conveyed in the existing Buckeye Feeder Canal with minimal improvements to the channel and replacement of the culverts. However, the 100-year peak discharges are so high compared to the Buckeye Canal cross-section capacity, that detention basins would be too large to reduce the flows enough to achieve that objective. Alternatively, detention basin sites are identified at points along the canal where runoff concentrates and the flow can be reasonably captured. The basins are made as large as practical for the available site and the attenuation achieved. The Alternative 1 improvements are shown on **Figure 4**.

Detention basins are located at 99th Avenue, 107th Avenue, and 115th Avenue. The 99th Avenue basin collects runoff flowing along the north side of the canal and local area sheet runoff in a flow-through basin concept. The flows in the Buckeye Feeder Canal are not intercepted by the basin. The stored runoff is discharged into the Buckeye Canal west of 99th Avenue through 2- 42 inch pipes. The canal is upsized from 99th Avenue to 107th Avenue to contain the discharge flow. The 107th Avenue basin collects runoff that crosses Lower Buckeye Road and overland flow from the east. Runoff crossing Lower Buckeye Road is conveyed to the basin in a new channel to prevent the runoff from overtopping 107th Avenue and continuing to the west. The channel flows by the basin with flows

in excess of 250 cfs flowing into the basin. The 250 cfs flow-by allows more basin volume for peak flow attenuation, making the basin more effective. The flow-by and the canal flow from the 99th Avenue basin are combined and conveyed under 107th Avenue. The canal is upsized from 107th Avenue to 115th Avenue to convey the combined flow. The 115th Avenue basin is situated on the south side of the Buckeye canal and collects runoff that flows over the canal and runoff flowing along the south side of the canal before it turns south. The Buckeye Canal acts as a flow-by channel on the north side of the basin allowing flows up to 300 cfs to flow by the basin. The basin discharges through 2-48 inch pipes into the canal. The combined flows are then conveyed along 115th Avenue to the point where the Buckeye Canal turns west. A channel is included, extending east from the Buckeye Canal at this point to collect the surface runoff not conveyed in the Voiter Ditch. The lateral channel joins the Buckeye Canal upstream of the 115th Avenue crossing and is sized for the 100 year flow. All channel improvements are sized for a concrete channel lining.

From this point, alternative alignments were considered to convey the runoff to the river. The existing Buckeye Canal alignment to the west would require channel improvements for approximately 3 miles, whereas the river is less than three quarters of a mile to the south. The 115th Avenue alignment has development along both sides of the road and there's a highpoint between the river and the canal that would need to be cut through. An alignment was selected a quarter mile west of 115th Avenue (117th Avenue alignment) that is unimproved and has a better grade to the river and is still less than a mile in length.

The 117th Avenue channel will penetrate the Holly Acres levee at the Gila River. The top of levee is 4 to 5 feet higher than the adjacent ground behind the levee. To prevent flows in the Gila River from moving up the channel and around the levee, berms will need to be extended along both sides of the 117th Avenue channel to an elevation of 943. The natural ground elevation between the Buckeye Feeder Canal and the Gila River varies but is around 940. Therefore the berms would need to extend all the way to the Buckeye Feeder Canal and would still not fully contain the flow. The water level that would escape the berms is expected to be above the design water surface in the river within the freeboard zone. The following alternatives could be pursued in response to the problem:

The reduced freeboard could be accepted.

5.

- ♦ The diversion structure at the Buckeye Feeder Canal & 117th Avenue could be designed to allow the excess flow to discharge to the west in the Buckeye Feeder Canal.
- A control gate could be installed at the Holly Acres levee that would be closed during flood events in the Gila River, preventing water from entering the 117th Avenue Channel. The gate could be manually or automatically activated.

The ability to meet the 40 cfs delivery requirement for the Buckeye Feeder Canal will be unaffected by the proposed improvements. The channel diversion at the 117th Avenue alignment will need to be designed to allow the first 40 cfs to continue west and all flows in excess of the 40 cfs to be directed south in the new channel to the Gila River.

Although the criteria for cross-road culverts only requires that they convey the 50 year discharge without overtopping, new culvert crossings are sized for the entire 100-year flow. This is done because the channels are sized for the 100-year flow with freeboard. The culverts are sized to be consistent with the channel design frequency.

100-year runoff generated downstream from 115th Avenue still exceeds the capacity of the crossings at El Mirage and Dysart Roads. The crossings are upsized as part of this alternative to convey the 100-year discharge. The Buckeye Feeder Canal is also improved by smoothing and lining the banks with concrete to make a hydraulically more efficient cross-section.

New right of way requirements for each channel reach are identified in the table on **Figure 4**. Existing right of way is used as much as possible. The right-of-way requirements for channels are based on two 12 foot access roads, one on each side. Where channels are next to public roads an access road is provided on one side only.

The attenuated flows resulting from the detention basins are summarized in **Table 1**. The flows are less than half the existing conditions flow and flood protection is provided from 99th Avenue along the channel alignment to the River. To ensure that the detention basins can be drained, the basin excavation depths are limited by the flow-line elevations of the existing downstream canals. If the

downstream canals are lowered with the channel improvements, the basins can be made deeper. Deeper basins will allow more peak flow attenuation by increasing the total storage volume, or the same attenuation can be achieved by reducing the required land area for the basins. The improvements to the Buckeye Canal west of 117th Avenue will provide flood protection for runoff generated west of 115th Avenue.

3. Alternative 2 - 100-year Conveyance

Alternative 2 is based on providing no detention and increasing the channel and road crossing capacity to convey the full 100-year existing conditions flow. The channel improvements begin at 107th Avenue where the Buckeye Feeder Canal will be improved to convey the 100-year peak discharge. The new channel will be realigned at a point 2000 feet east of 115th Avenue to collect runoff at an existing low point preventing runoff from breaking away from the canal to the south. From 115th Avenue the channel follows the same alignment as Alternative 1 and includes the measures described with Alternative 1 required to penetrate the Holly Acres levee. The channel improvements are all concrete lined. The Alternative 2 improvements are shown on Figure 5. The same lateral channel is included in Alternative 2, extending east from the Buckeye Canal 115th Avenue crossing, to collect the surface runoff not conveyed in the Voiter Ditch. The improvements downstream from the 117th Avenue alignment are the same as for Alternative 1.

Alternative 2 channels and culverts are sized for the 100-year existing conditions flows in **Table 1**. Although the channels are larger than the Alternative 1 channels, there is much less right-of-way and excavation required due to elimination of the detention basins.

4. Alternative 3 - 10-year Conveyance

Alternative 3 is based on providing 10-year protection as a cost saving option to either reduce the project cost or allow phasing of improvements. Alternative 3 consists of channel improvements and concrete lining to the Buckeye Canal from 107th Avenue to Dysart Road along its existing alignment with channels and culverts sized for the 10-year storm, except that the channel is re-routed east of 115th Avenue through the low point described with Alternative 2. The 10-year flows are nearly the same as the attenuated flows from Alternative 1. The Alternative 3 channels and culverts could be

constructed as the first phase of a 100-year plan. The basins and remaining channel improvements would then be made at a later time. The Alternative 3 improvements are shown on **Figure 6**. The lateral channel at the 115th Avenue crossing is included in Alternative 3, sized for the 10-year flow. To provide a minimum 100-year level of protection for existing structures, floodproofing measures were included for overland flow occurring during a 100-year storm that is not contained in the channels. For homes north of the Voiter Ditch, individual berms are planned to be constructed around the homes to prevent flooding. For homes south of the Voiter Ditch a small levee is planned to divert surface runoff around the homes to the new lateral channel.

Alternatively, the 10-year flows could be directed to the Gila River along the 117th Avenue alignment as shown on Alternatives 1 and 2. However, the Holly Acres levee issues would then need to be addressed as described in Alternative 1.

C. Estimated Costs

The estimated costs for the three alternatives are summarized in **Table 2**. Alternative 1 is significantly more expensive than the other alternatives due to the right of way costs for the detention basins. Alternative 2 is the least costly alternative that provides 100-

Table 2 - Cost Summary

Alternative	Cost
Alt. 1 - Detention	\$8.7 Million
Alt. 2 - 100-yr Conveyance	\$4.7 Million
Alt. 3 - 10-yr Conveyance	\$4.0 Million

year protection in the study area. Alternative 3 provides a significant benefit, although not a 100-year flood protection benefit, to a significant area at a somewhat lower cost. A breakdown of the estimated costs is contained in the **Appendix**.

D. Joint Project Recommendations

The Flood Control District of Maricopa County (FCDMC) frequently participates in implementation of regional flood control projects based on an internal prioritization process applied to projects proposed by various entities within the County. Cost sharing is one of the criteria included in the prioritization. If the agency proposing the project is willing to cost share the project, typically at a level of 50 percent, the project is scored more highly than projects with no cost sharing. The

FCDMC is a good potential partner in the implementation of the Buckeye Feeder Canal improvements.

Salt River Project (SRP) is also a potential partner, based on their need to alleviate potential liability from flooding caused by overtopping of the Buckeye Feeder Canal. All the alternatives presented in this report utilize SRP right of way and facilities and will require cooperation from SRP.

<u>APPENDIX</u>

- Rational Method Summary of Right-of-way Drainage
 - Existing Conditions
 - Medium Cost Alternative
 - Full Cost Alternative
- ♦ HEC-1 Summary Output
 - Existing Conditions, 100-year Storm
 - Alternative 1, 100-year Detention
 - Alternative 2, 100-year Conveyance
 - Alternative 3, 10-year Conveyance
- ♦ Culvert Design Calculations
- **♦** Channel Calculations
- **♦** Cost Summary

115th Avenue Drainage

Rational Method Summary of Right-of-Way Drainage Existing Conditions

010	(m3/sec)	0.132	0.226	20	0.333	0.433	0.476	7	0 162	ر ا ا	0.141	:	0.164	0.244	0.212	0.132	0.14	0.156	0	0 103	0.141
010	(cts)	4.7	8.0	1.7	11.7	. r.	16.8	2	5.7	3.7	20.0		5.8	9.8	7.5	4.7	6.4	5.5	30	9 8	5.0
ဥ	Ę.	0.34	0.63	0.33	0.85	0 88	0.91	5	0.50	0.31	0.40		0.49	0.76	0.32	0.21	0.19	0.54	0.43	98.0	0.40
٦ ₅	(min)	20.22	37.74	19.58	50.98	52.70	54.71		30.14	18.32	23.92		29.21	45.43	19.12	12.64	11.53	32.65	26.03	21.37	23.92
_	(in/hr)	3.20	2.15	3.25	8	1.75	1 70	•	2.50	3.25	2.85		2.55	1.90	3.25	4.05	4.30	2.40	2.75	3.15	2.85
Total Slope	(tVmi)	12.5 0.038091	11.45 0.035472	5 0.040837		16.5 0.033111			8 0.036743	8.1 0.038636	_		10.4 0.036773	10.3 0.034892	31 0.036732	32 0.038613	40 0.038613	8 0.036732	5 0.038613	8 0.038613	11.7 0.037486
Section Slope	(ft/mi)	12.5	10.4	S	10.2	31	32	}	ω	8.1	11.7		10.4	10.2	31	35	4	80	5	80	11.7
Total Length	(tt)	1600	4200	800	9	9440	10760		2320	1000	2000		2600	5280	2640	1320	1320	2640	1320	1320	2000
Section Length	((()	1600	2600	800	2600	2640	1320		1320	1000	2000		2640	2640	2640	1320	1320	2640	1320	1320	2000
Coeff	ပ္	0.72	0.70	0.71	0.70	0.69	0.69	SNOI	0.69	0.69	0.69		0.69	0.69	0.69	69.0	0.69	0.69	0.69	0.69	0.69
Earthen	Area (s.f.)	36800	117400	14400	212400	294240	335160	ALCULAT	78920	38000	62000		80600	161200	81840	40920	40920	81840	40920	40920	62000
Paved	Direction Area (s.f.) Area (s.	51200	113600	17600	193600	256960	288640	MINAGEC	65680	34000	48000		62400	124800	63360	31680	31680	63360	31680	31680	48000
		≥	တ	>	S	S	တ	OFFSITE DRAINAGE CALCUL	z	3	တ		ഗ	တ	S	တ	S	တ	တ	z	S
	Side	щ	ш	ш	ш	ш	ш	SEE	ш	ш	ш	:	≥	≥	≥	≥	≥	≥	≥	≥	≥
End	Station		Buckeye		Durango	L Buckeye	Elwood		Atlanta		Southern		Buckeye	Durango	L Buckeye	Elwood	1/4 mi N Bwy	Broadway	Roeser	Atlanta	Southern
Begin	Station	Buckeye East	2 Durango	3 Durango East	L Buckeye	5 Elwood	1/4 mi N Bwy	Channel	Southern	9 Southern	10 Gila Bank		Durango	12 L Buckeye	13 Elwood	14 1/4 mi N Bwy	15 Broadway	6 Roeser	7 Atlanta	18 Southern	19 Gila Bank
Area	ė,	- 1	~	က	4	တ	9	7	80	G	5	,	Ξ	12	5	7	15	9	17	2	19

0.8 0.6 C - Roadway (10-year) = C - Shoulders & Right of way (10 year) Kb = m Log A + b m = -0.00625

b = 0.04 A = Area (ac) Tc = 11.4 Lv.5 Kbv0.52 S∿0.31 №0.38 Q = C i A (10 year Discharge)

115th Avenue Drainage

;

Rational Method Summary of Right-of-Way Drainage Medium Cost Alternative

010	(m3/sec)	1			9 0.337						1 0.145	0	200	9 0.251	_				3 0.092		
010	(cts)	4	· σο	-	11.9	15.	17	•	S	i ei	5.1	·	ņ	œ	7.	4	Ó	က်	3.3	(r)	
J _C	3	हिं हिं	0.63	0.33	0.85	0.88	0.91	•	0.50	0.30	0.40	9	 5	0.76	0.32	0.21	0.19	0.54	0.43	0.36	
J.	(min)	20.22	37.74	19.58	50.98	52.70	54.71		30.14	18.21	23.92	6	23.67	45.43	19.12	12.64	11.46	32.65	26.03	21.37	0
-	(in/hr)	3.20	2.15	3.25	1.80	1.75	1.70) : :	2.50	3.30	2.85	23 0	6.5	. 8.	3.25	4.05	4.30	2.40	2.75	3.15	מט
ξ		5 0.038091	5 0.035472	5 0.040837	9 0.033941		_		8 0.036743		7 0.037486				0.036732	2 0.038613	0.03816	3 0.036732	5 0.038613	8 0.038613	207700 7
Total Slope	(tr/ml)	12.	11.4	<i>,</i>	10,0	16.5				8.1	_	·		10.3	છ	හ <u>ි</u>	4	~		w	
Section Slope	[(ft/ml)	12.5	10.4	S	10.2	3	32		80	89.	11.7	·		10.2	31	32	4	∞	ß	80	117
Total Length	(w)	1600	4200	80	9800	9440	10760		2320	1000	2000	2600	2	5280	2640	1320	1320	2640	1320	1320	500
Section Length	(w)	1600	2600	8	2600	2640	1320		1320	1000	2000	0840	2 9	2640	2640	1320	1320	2640	1320	1320	2000
Coeff	ံ	0.72	0.71	0.75	0.71	0.71	0.71	SNO	0.70	0.69	0.71	2	; i	0.7	0.71	0.71	0.71	0.71	0.71	0.71	27.0
Earthen	Area (s.f.)	36800	101800	8000	174800	240800	273800	ALCULATI	71000	38000	20000	65000	0000	130000	00099	33000	36960	00099	33000	33000	2000
Paved	Direction [Area (s.f.) Area (s.f.)	51200	129200	24000	231200	310400	350000	DRAINAGE CALCULAT	73600	34000	00009	78000	0000	126000	79200	39600	48840	79200	39600	39600	9000
	_	>	S	>	တ	တ	တ	OFFSITE DF	z	≥	တ	cr.		ກ	တ	တ	တ	ဟ	S	z	Œ.
i	Side	ш	ш	ш	ш	ш	ш	SEE O	ш	ш	ш	3	: :	≥ ;	≥	>	≥	≯	≥	≯	3
End	Station		Buckeye		Durango	L Buckeye	Elwood		Atlanta		Southern	Ruckeve		Durango	L Buckeye	Elwood	1/4 mi N Bwy	Broadway	Roeser	Atlanta	Southern
Begin	Station	Buckeye East	2 Durango	Durango East	L Buckeye	Elwood	1/4 mi N Bwy	Channel	Southern	9 Southern	10 Gila Bank	Durango		L Duckeye	3 Elwood	14 1/4 mi N Bwy	15 Broadway	6 Roeser	Atlanta	8 Southern	Gila Bank
Area	ġ Z	- ,	~	က	4	သ	9	7	∞	6	2	=	•	7	-	4	15	9	17	8	σ

0.8 C - Roadway (10-year) =
C - Shoulders & Right of way (10 year)
Kb = m Log A + b
m = -0.00625
b = 0.04

A = Area (ac)
Tc = 11.4 L^.5 Kb^0.52 S^-0.31 P-0.38
Q = C i A (10 year Discharge)

115th Avenue Drainage

Rational Method Summary of Right-of-Way Drainage Full Cost Alternative

	_																							
010	(m3/sec)	0.132	0.261	0.201	0.051	0.364	0.48	0.514	2	3	81.0 0.18	0.107	0.145		0.19	0.296	0.257	0.10	0.100	0.175	0.195	0.112	0.109	0.100
010	(cts)	4.7	00	3.6	7.8	12.9	16.9	181	: }	(ω 	5.1	•	Ö.	10.5	6	. 4	0.0	6.2	6.9	4.0	3.8	, t
<u>ئ</u>	Œ)	0.34 8.03	0.63	8 6	0.83	0.85	0.88	0.91	; ;	6	0.00	O. 35	0.40	9	54.0	0.75	0.32	100	- (D. 18	0.54 42	0.43	0.36	040
J _C	(III)	20.22	37.56		20.00	50.84	52.60	54.66		20.02	\$ 6	18.ZI	23.92	6	5.67	45.13	19.00	12.56	200	1.40	32.44	25.87	21.37	23.92
	(Infini	3.20	2.15	ic	5.63	1.80 08.	1.75	1.70		2 50	3 6	ئ ص	2.85	22.0	00.7	<u>.</u>	3.25	4.05	2 4	٠. د د د	2.40	2.75	3.15	2.85
al No		12.5 0.038091	11.45 0.035155			10.9 0.033//3	6.5 0.032984	8.4 0.032718		8 0.036506		0.1 0.00000	1.7 0.037486	0.4 0.03637	200000		31 0.036279	32 0.03816	40 0 000		6 0.036279		8 0.038613	1.7 0.037486
Section Total Slope Slope	unu) (unn		_								ά τ							32	40	2 0	0 1	က (∞	11.7
Total S Length (_	_			365				2320	100	9 6	2002	2600	5280	05.00	2640	1320	1320	2640	1000	1320	1320	2000
Section Length	(in)	3	2600	800	2600	3 6	2040	1320		1320	1000	0 0	999	2640	2640	250	2040	1320	1320	2640	7000	1320	1320	2000
Coeff.	5	0.72	0.72	0.75	0.70	0.70	0.73	0.73	SNO	0.70	0.69	7	5	0.71	0.71			0.73	0.73	0.73	9 9	0.0	0.73 1.3	0.71
Earthen Area (s.f.)	36800	2000	110100	8000	164900	215460	004012	22/340	ALCULATI	76280	38000	0000	330	74600	152600	76560	Occo.	30360	30360	60720	03000	30300	00002	20000
Flow Paved Earther Direction Area (s.f.) Area (s.f.)	51200	20101	149500	24000	267100	362140	202140	403660	OFFSITE DRAINAGE CALCULA	81520	34000	2000	3	91300	184900	02040	0100	55440	55440	110880	55440	47530	47320	00000
		: (ກ :	>	S	o cr	٥ (0	これにい	z	>	U.	,	ဟ	S	ď		ָּס	တ	S	ď) Z	2 0	2
Side	L	ı u	u I	ш	ш	ш	ט נ	יו ני	SEE C	ш	ш	ш	ı	3	≥	3	: 3	≥ ;	>	≥	3	: }	: 3	
End		Outo you	DUCKEYE		Durango	LBuckeye	Flynood	FIW000		Atlanta		Southern		Buckeye	Durango	L. Buckeye	Thursday.	DOOMIS .	1/4 mi N Bwy	Broadway	Roeser	Atlanta	Southern	Southern
Begin Station	Buckeye East	2 Durango	ango.	3 Durango East	4 L Buckeye	5 Elwood	1/4 mi N Bun	Possol	Ciding	Southern	Southern	10 Gila Bank		1 Durango	12 L Buckeye	3 Elwood	9		5 Broadway	6 Roeser	7 Atlanta	18 Southern	19 Gila Bank	la Dalla
•	8	ē	í	ร	ت	卣	=	٠,	٠ ر	٠Ŏ	თ ი	Ő		ã	_	ũ	1 2	۶,	ñ	ŏ	7	ď	œ	31

C - Roadway (10-year) =
C - Shoulders & Right of way (10 year)
Kb = m Log A + b
m = -0.00625
b = 0.04

0.8

A = Area (ac) Tc = 11.4 L^.5 Kb^0.52 S^0.31 №0.38 Q = C i A (10 year Discharge)

3 COMBIN	TA DBI	CPOD3	470.	16.17	320.	114	110.	12 14
•	DIVERSION TO							13.14
·	HYDROGRAPH AT	DIOC	85.	16.17	58.	21.		13.14
+	ROUTED TO	CPOD4	385.	16.17	263.	93.	90.	13.14
+	HYDROGRAPH AT	RTODMC	349.	17.42	253.	89.	86.	13.14
+	3 COMBINED AT	SUBMC	643.	13.00	221.	57.	55.	1.00
+		CPMC1	983.	14.17	603.	203.	196.	16.40
+	DIVERSION TO	DIMB	375.	14.17	231.	78.	75.	16.40
+	HYDROGRAPH AT	CPMC2	607.	14.17	372.	125.	120.	16.40
+	ROUTED TO	RTMCIE	595.	14.50	369.	123.	119.	16.40
+	HYDROGRAPH AT	SUBEB	137.	12.42	24.	6.	6.	.14
+	HYDROGRAPH AT	CPEB1	451.	13.00	211.	58.	56.	2.75
+	2 COMBINED AT	CPEB2	522.	12.83	234.	64.	62.	2.89
+	ROUTED TO	RTEBIE	506.	13.17	232.	63.	61.	2.89
+	HYDROGRAPH AT	SUBIE	201.	12.83	62.	16.	15.	.26
+	2 COMBINED AT	CPIE1	680.	13.08	289.	79.	76.	3.15
+	2 COMBINED AT	CPIE2	1015.	14.25	628.	198.	191.	16.80
+	ROUTED TO	RTIEIB	986.	15.00	611.	190.	183.	16.80
+	HYDROGRAPH AT	SUBOC	421.	12.25	67.	19.	18.	.31
+	HYDROGRAPH AT	CPOC1	85.	16.17	58.	21.		13.14
+	ROUTED TO						20.	
	2 COMBINED AT	RTDIOC	67.	18.58	53.	19.	18.	
+	ROUTED TO	CPOC2		12.25	95.	39.		.31
+	HYDROGRAPH AT	RTOCMB	261.	13.33	88.	37.	35.	.31
+	HYDROGRAPH AT	SUBMB	631.	12.92	210.	53.	51.	.99
+	ROUTED TO	СРМВ	375.	14.17	231.	78.	75.	16.40
+		RTDIMB	352.	15.25	223.	74.	71.	16.40
+	3 COMBINED AT	CPMB1	782.	13.25	439.	155.	150.	18.19
+	ROUTED TO	RTMBIB	724.	13.83	433.	150.	145.	18.19
+	HYDROGRAPH AT	SUBIB	326.	12.92	102.	26.	25.	.46
+	3 COMBINED AT	CPIB	1715.	14.00	1076.	363.	350.	18.56
+	ROUTED TO	RTIBIA	1715.	14.08	. 1076.	362.	349.	18.56
+	HYDROGRAPH AT	SUBME	218.	12.67	45.	12.	11.	.32

: 2	ROUTED TO	RTMEIA	165.	13.50	45.	12.	11.	.32
•	HYDROGRAPH AT	SUBIA	281.	12.50	49.	13.	12.	.31
+	3 COMBINED AT	CPIA	1831.	14.00	1131.	384.	370.	19.19
•	ROUTED TO	RTIAHB	1827.	14.17	1130.	381.	367.	19.19
+	HYDROGRAPH AT	SUBLD	314.	12.25	48.	15.	14.	.28
+	ROUTED TO	RTLDMA	297.	12.50	48.	15.	14.	.28
+	HYDROGRAPH AT	SUBMA	185.	12.50	33.	8.	8.	.25
+	2 COMBINED AT	CPMA	478.	12.50	81.	23.	22.	.53
+	ROUTED TO	RTMAHB	388.	13.08	81.	22.	22.	.53
+	HYDROGRAPH AT	SUBHB	271.	12.50	46.	12.	11.	.34
+	3 COMBINED AT	СРНВ	1944.	14.08	1223.	412.	397.	20.06
+	ROUTED TO	RTHBDA	1939.	14.17	1222.	410.	394.	20.06
+	HYDROGRAPH AT	SUBED	250.	13.00	76.	19.	18.	.48
+	ROUTED TO	RTEDID	120.	16.25	63.	18.	17.	.48
+	HYDROGRAPH AT	SUBID	340.	12.83	84.	21.	20.	.56
+	2 COMBINED AT	CPID	337.	12.83	126.	39.	37.	1.04
+	ROUTED TO	RTIDIC	299.	13.67	119.	38.	36.	1.04
+	HYDROGRAPH AT	SUBIC	244.	13.00	74.	19.	18.	.53
+	2 COMBINED AT	CPIC	483.	13.58	177.	56.	54.	1.57
+	ROUTED TO	RTICDA	433.	14.33	171.	54.	52.	1.57
+	HYDROGRAPH AT	SUBDA	267.	12.58	53.	14.	13.	.33
+	3 COMBINED AT	CPDA	2325.	14.25	1392.	470.	453.	21.96
+	ROUTED TO	RTDACC	2123.	15.58	1354.	439.	423.	21.96
+	HYDROGRAPH AT	SUBEE	704.	12.92	210.	58.	56.	1.43
+	HYDROGRAPH AT	CPEE1	310.	14.75	197.	58.	56.	1.18
+	ROUTED TO 2 COMBINED AT	RTDIEE	305.	15.50	193.	57.	54.	1.18
+	ROUTED TO	CPEC	704.	12.92	376.	115.	110.	1.43
+	HYDROGRAPH AT	RTEEEA	682.	13.42	372.	113.	109.	1.43
+	2 COMBINED AT	SUBEA	607.	13.00	186.	47.	45.	1.30
+	ROUTED TO	CPEA	1230.	13.25	538.	158.	153.	2.73
+		RTEADC	1076.	14.50	518.	152.	147.	2.73

HYDROGRAPH AT	SUBDC	545.	12.75	128.	32.	31.	.84
2 COMBINED AT	CPDC	1123.	14.42	583.	184.	177.	3.57
ROUTED TO	RTDCCC	1028.	15.50	566.	175.	169.	3.57
HYDROGRAPH AT	SUBDD	118.	12.33	17.	4.	4.	.13
ROUTED TO	RTDDCC	84.	13.33	17.	4.	4.	.13
HYDROGRAPH AT	SUBCC	691.	12.67	146.	38.	37.	. 98
3 COMBINED AT	CPCC1	1042.	15.50	636.	216.	208.	4.68
2 COMBINED AT	CPCC2	3068.	15.58	1872.	636.	613.	26.64
ROUTED TO	RTCCCB	2979.	16.50	1857.	606.	583.	26.64
HYDROGRAPH AT	SUBLB	171.	12.67	34.	9.	8.	.25
ROUTED TO	RTLBHA	130.	13.58	34.	9.	8.	.25
HYDROGRAPH AT	SUBHA	356.	12.42	59.	15.	15.	.42
2 COMBINED AT	СРНА	354.	12.42	91.	24.	23.	.67
ROUTED TO	RTHAGD	216.	13.92	88.	23.	22.	.67
HYDROGRAPH AT	SUBKC	367.	12.58	67.	17.	16.	.52
ROUTED TO	RTKCGD	247.	13.75	65.	17.	16.	.52
HYDROGRAPH AT HYDROGRAPH AT	SUBGD	592.	12.67	135.	34.	33.	.77
ROUTED TO	SUBGC	243.	12.25	31.	9.	8.	.21
4 COMBINED AT	RTGCGD	125.	13.00	31.	9.	8.	.21
ROUTED TO	CPGD	696.	13.58	308.	81.	78.	2.17
HYDROGRAPH AT	RTGDCB	627.	14.50	294.	80.	77.	2.17
3 COMBINED AT	SUBCB	540.	12.92	172.	44.	42.	.74
ROUTED TO	CPCB	3205.	16.42	2039.	716.	690.	29.55
HYDROGRAPH AT	RTCBCA	3073.	17.50	2031.	673.	648.	29.55
ROUTED TO	SUBGB	237.	12.25	32.	9.	8.	.23
HYDROGRAPH AT	RTGBCA	81.	14.42	31.	8.	8.	.23
3 COMBINED AT	SUBCA	587.	13.08	223.	57.	55.	.97
ROUTED TO	CPCA	3084.	17.50	2052.	730.	704.	30.75
HYDROGRAPH AT	RTCABC	3058.	17.83	2050.	714.	688.	30.75
2 COMBINED AT	SUBBC	235.	13.17	81.	20.	20.	.61
	CPBC	3057.	17.83	2051.	732.	705.	31.36

٠	3 COMBINED AT	CDUM	4239.	18.00	3292.	1393.	1341.	63.44
•	HYDROGRAPH AT	SUBLC	109.	12.33	14.	4.	3.	.10
	ROUTED TO					• •	J.	.10
+		RTLCLA	55.	13.42	14.	4.	3.	.10
•	HYDROGRAPH AT	SUBLA	266.	12.83	70.	18.	17.	.50
•	2 COMBINED AT	CPLA	293.	13.00	84.	21.	21.	. 60
	ROUTED TO	RTLAKB	281.	13.33	83.	21.	21.	. 60
+	HYDROGRAPH AT	SUBKB	322.	12.50	57.	15.	14.	
	2 COMBINED AT	СРКВ	390.	13.08	138.			.42
	HYDROGRAPH AT	-	0,50.	13.00	130.	36.	34.	1.02
•		SUBGA	258.	12.08	18.	5.	5.	.14
	3 COMBINED AT	CDUM	4239.	18.00	3345.	1425.	1373.	64.60
	HYDROGRAPH AT	SUBBB	179.	12.75	43.	11.	10.	.25
	ROUTED TO						10.	.23
		RTBBBA	108.	14.58	41.	11.	10.	.25
	HYDROGRAPH AT	SUBBA	161.	12.92	48.	13.	12.	.34
	2 COMBINED AT	CPBA	160.	12.92	86.	23.	22.	.59
	HYDROGRAPH AT	RTBAAA	139.	13.58	61.	16.	15.	.50
	2 COMBINED AT	CPAA	273.	13.17	146.	39.	37.	1.09

^{***} NORMAL END OF HEC-1 ***

	BINED AT	GD0D2	470	16.15				
î.	DIVERSION TO	CPOD3	470.	16.17	320.	114.	110.	13.14
+		DIOC	85.	16.17	58.	21.	20.	13.14
+	HYDROGRAPH AT	CPOD4	385.	16.17	263.	93.	90.	13.14
+	ROUTED TO	RTODMC	349.	17.42	253.	89.	86.	13.14
+	HYDROGRAPH AT	SUBMC	643.	13.00	221.	57.	55.	1.00
+	3 COMBINED AT	CPMC1	983.	14.17	603.	203.	196.	16.40
+	DIVERSION TO	DIMB	375.	14.17	231.	78.	75.	16.40
+	HYDROGRAPH AT	CPMC2	607.	14.17	372.	125.	120.	16.40
+	ROUTED TO	RTMCIE	595.	14.50	369.	123.	119.	16.40
+	HYDROGRAPH AT	SUBEB	137.	12.42	24.	6.	6.	.14
+	HYDROGRAPH AT	CPEB1	451.	13.00	211.	58.	56.	2.75
+	2 COMBINED AT	CPEB2	522.	12.83	234.	64.	62.	2.89
+	ROUTED TO	RTEBIE	506.	13.17	232.	63.	61.	2.89
+	HYDROGRAPH AT	SUBIE	201.	12.83	62.	16.	15.	.26
+	2 COMBINED AT	CPIE1	680.	13.08	289.	79.	76.	3.15
+	ROUTED TO	DETIE	283.	15.00	250.	79.	76.	3.15
+	DIVERSION TO	DETIER	283.	15.00	250.	79.	76.	3.15
+	HYDROGRAPH AT	DIVIE	0.	.08	0.	0.	0.	3.15
+	2 COMBINED AT	CPIE2	595.	14.50	369.	123.	119.	16.80
+	ROUTED TO	RTIEIB	562.	15.50	357.	116.	112.	16.80
+	HYDROGRAPH AT	SUBOC	421.	12.25	67.	19.	18.	.31
+	HYDROGRAPH AT	CPOC1	85.	16.17	58.	21.	20.	13.14
+	ROUTED TO	RTDIOC	67.	18.58	53.	19.	18.	13.14
+	2 COMBINED AT	CPOC2	421.	12.25	95.	39.	38.	.31
+	ROUTED TO	RTOCMB	261.	13.33	88.	37.	35.	.31
+	HYDROGRAPH AT	SUBMB	631.	12.92	210.	53.	51.	.99
+ .	HYDROGRAPH AT	CPMB	375.	14.17	231.	78.	75.	16.40
+	ROUTED TO	RTDIMB	352.	15.25	223.	74.	71.	16.40
+	3 COMBINED AT	CPMB1	782.	13.25	439.	155.	150.	18.19
•	ROUTED TO	RTMBIB	724.	13.83	433.	150.	145.	18.19
+	DIVERSION TO	DETIBR	250.	12.92	246.	103.	100.	18.19

HYDROGRAPH AT		47.4	12.62				
HYDROGRAPH AT	DIVIB	474.	13.83	187.	47.	45.	18.1
3 COMBINED AT	SUBIB	326.	12.92	102.	26.	25.	. 4 6
	CPIB	837.	15.25 (555.	186.	179.	18.56
ROUTED TO	DETIB	448.	16.92	413.	174.	167.	18.56
HYDROGRAPH AT	CPIB1A	283.	15.00	250.	79.	76.	3.15
HYDROGRAPH AT	CPIB1B	250.	12.92	246.	103.	100.	18.19
3 COMBINED AT	CPIB2	949.	16.42	870.	352.	339.	18.56
ROUTED TO	RTIBIA	948.	16.50	870.	351.	338.	18.56
HYDROGRAPH AT	SUBME	218.	12.67	45.	12.	11.	. 32
ROUTED TO	RTMEIA	165.	13.50	45.	12.	11.	.32
HYDROGRAPH AT	SUBIA	281.	12.50	49.	13.	12.	.31
3 COMBINED AT	CPIA	960.	16.33	908.	372.	359.	19.19
ROUTED TO	BHAITS	960.	16.42	908.	369.	355.	19.19
DIVERSION TO	DETDAR	660.	16.42	608.	209.	201.	19.19
HYDROGRAPH AT	Advid	300.	12.50	300.	160.	154.	19.19
HYDROGRAPH AT	SUBLD	314.	12.25	48.	15.	14.	.28
ROUTED TO	RTLDMA	297.	12.50	48.	15.	14.	.28
HYDROGRAPH AT	SUBMA	185.	12.50	33.	8.	8.	.25
2 COMBINED AT	СРМА	478.	12.50	81.	23.	22.	.53
ROUTED TO	RTMAHB	388.	13.08	81.	22.	22.	.53
HYDROGRAPH AT	SUBHB	271.	12.50				.34
3 COMBINED AT	СРНВ	756.	13.00	406.	191.		20.06
ROUTED TO	RTHBDA	746.	13.17	405.	188.	182.	20.06
HYDROGRAPH AT	SUBED	250.	13.00	76.	19.	18.	
ROUTED TO	RTEDID	120.		63.	18.	17.	.48
HYDROGRAPH AT	SUBID	340.	12.83	84.	21.		.48
2 COMBINED AT	. CPID	•				20.	.56
ROUTED TO		337.	12.83	126.	39.	37.	1.04
HYDROGRAPH AT		299.	13.67	119.	38.	36.	1.04
2 COMBINED AT	SUBIC	244.	13.00	74.	19.	18.	.53
ROUTED TO	CPIC	483.	13.58	177.	56.	54.	1.57
	RTICDA	433.	14.33	171.	54.	52.	1.57

CPDAIA 660. 16.42 608. 209. 201. 19.19 2 COMBINED AT CPIB2 1028. 14.42 760. 257. 248. 20.76 ROUTED TO DETDA 414. 20.33 403. 175. 169. 20.76 HYDROGRAPH AT SUBDA 267. 12.58 53. 14. 1333 3 COMBINED AT CPDA 962. 13.17 713. 376. 362. 21.96 ROUTED TO ROUTED TO RTDACC 781. 14.92 706. 316. 305. 21.96 HYDROGRAPH AT SUBEE 704. 12.92 210. 58. 56. 1.43 HYDROGRAPH AT CPEE1 310. 14.75 197. 58. 56. 1.18 ROUTED TO ROUTED TO RTDIEE 305. 15.50 193. 57. 54. 1.18 CPEC 704. 12.92 376. 115. 110. 1.43 ROUTED TO RTDEEA 682. 13.42 372. 113. 109. 1.43 HYDROGRAPH AT SUBEA 607. 13.00 186. 47. 45. 1.30 2 COMBINED AT CPEA 1230. 13.25 538. 158. 153. 2.73 ROUTED TO RTEADC 1076. 14.50 518. 152. 147. 2.73 HYDROGRAPH AT SUBDA 1076. 14.50 518. 152. 147. 2.73 HYDROGRAPH AT SUBDC 545. 12.75 128. 32. 3184 2 COMBINED AT CPDC 1123. 14.42 583. 184. 177. 3.57 ROUTED TO RTDCCC 1028. 15.50 566. 175. 169. 3.57 HYDROGRAPH AT SUBDD 118. 12.33 17. 4. 4. 413	HYDROGRAPH AT							
ROUTED TO DETDA 414. 20.33 403. 175. 169. 20.76 HYDROGRAPH AT SUBDA 267. 12.58 53. 14. 1333 3 COMBINED AT CPDA 962. 13.17 713. 376. 362. 21.96 ROUTED TO ROUT	2 COMBINED AT	CPDA1A	660.	16.42	608.	209.	201.	19.19
DETDA 414. 20.33 403. 175. 169. 20.76 HYDROGRAPH AT SUBDA 267. 12.58 53. 14. 1333 3 COMBINED AT CPDA 962. 13.17 713. 376. 362. 21.96 ROUTED TO RTDACC 781. 14.92 706. 316. 305. 21.96 HYDROGRAPH AT SUBDE 704. 12.92 210. 58. 56. 1.43 HYDROGRAPH AT CPEE1 310. 14.75 197. 58. 56. 1.18 ROUTED TO RTDIEE 305. 15.50 193. 57. 54. 1.18 ROUTED TO RETEEA 682. 13.42 372. 113. 109. 1.43 HYDROGRAPH AT SUBDA 607. 13.00 186. 47. 45. 1.30 2 COMBINED AT CPEA 1230. 13.25 538. 158. 153. 2.73 ROUTED TO READC 1076. 14.50 518. 152. 147. 2.73 HYDROGRAPH AT SUBDA 545. 12.75 128. 32. 3184 2 COMBINED AT CPEA 1230. 13.42 583. 184. 177. 3.57 ROUTED TO REDCC 1028. 15.50 566. 175. 169. 3.57 HYDROGRAPH AT SUBDA 118. 12.33 17. 4. 4. 1.13 ROUTED TO REDDCC 84 13.33		CPIB2	1028.	14.42	760.	257.	248.	20.76
SUBDA 267. 12.58 53. 14. 1333 3 COMBINED AT CPDA 962. 13.17 713. 376. 362. 21.96 ROUTED TO RTDACC 781. 14.92 706. 316. 305. 21.96 HYDROGRAPH AT SUBEE 704. 12.92 210. 58. 56. 1.43 HYDROGRAPH AT CPEE1 310. 14.75 197. 58. 56. 1.18 ROUTED TO RTDIEE 305. 15.50 193. 57. 54. 1.18 2 COMBINED AT CPEC 704. 12.92 376. 115. 110. 1.43 ROUTED TO RTEEEA 682. 13.42 372. 113. 109. 1.43 HYDROGRAPH AT SUBEA 607. 13.00 186. 47. 45. 1.30 2 COMBINED AT CPEA 1230. 13.25 538. 158. 153. 2.73 ROUTED TO RTEADC 1076. 14.50 518. 152. 147. 2.73 HYDROGRAPH AT SUBDC 545. 12.75 128. 32. 3184 2 COMBINED AT CPDC 1123. 14.42 583. 184. 177. 3.57 ROUTED TO RTDCCC 1028. 15.50 566. 175. 169. 3.57 HYDROGRAPH AT SUBDD 118. 12.33 17. 4. 4. 413	ROUTED TO	DETDA	414.	20.33	403.	175.	169.	20.76
3 COMBINED AT CPDA 962. 13.17 713. 376. 362. 21.96 ROUTED TO RTDACC 781. 14.92 706. 316. 305. 21.96 HYDROGRAPH AT SUBEE 704. 12.92 210. 58. 56. 1.43 HYDROGRAPH AT CPEE1 310. 14.75 197. 58. 56. 1.18 ROUTED TO RTDIEE 305. 15.50 193. 57. 54. 1.18 2 COMBINED AT CPEC 704. 12.92 376. 115. 110. 1.43 ROUTED TO RTEEEA 682. 13.42 372. 113. 109. 1.43 HYDROGRAPH AT SUBEA 607. 13.00 186. 47. 45. 1.30 2 COMBINED AT CPEA 1230. 13.25 538. 158. 153. 2.73 ROUTED TO RTEADC 1076. 14.50 518. 152. 147. 2.73 HYDROGRAPH AT SUBDC 545. 12.75 128. 32. 31. 84 2 COMBINED AT CPDC 1123. 14.42 583. 184. 177. 3.57 ROUTED TO RTDCCC 1028. 15.50 566. 175. 169. 3.57 HYDROGRAPH AT SUBDD 118. 12.33 17. 4. 4. 1.33 ROUTED TO RTDCCC 84. 13.33 ROUTED TO	HYDROGRAPH AT	SUBDA	267.	12.58	53.	14.	13.	33
ROUTED TO RTDACC 781. 14.92 706. 316. 305. 21.96 HYDROGRAPH AT SUBEE 704. 12.92 210. 58. 56. 1.43 HYDROGRAPH AT CPEE1 310. 14.75 197. 58. 56. 1.18 ROUTED TO RTDIEE 305. 15.50 193. 57. 54. 1.18 2 COMBINED AT CPEC 704. 12.92 376. 115. 110. 1.43 ROUTED TO RTEEEA 682. 13.42 372. 113. 109. 1.43 HYDROGRAPH AT SUBEA 607. 13.00 186. 47. 45. 1.30 2 COMBINED AT CPEA 1230. 13.25 538. 158. 153. 2.73 ROUTED TO RTEADC 1076. 14.50 518. 152. 147. 2.73 HYDROGRAPH AT SUBDC 545. 12.75 128. 32. 3184 2 COMBINED AT CPDC 1123. 14.42 583. 184. 177. 3.57 ROUTED TO RTDCCC 1028. 15.50 566. 175. 169. 3.57 HYDROGRAPH AT SUBDD 118. 12.33 17. 4. 4. 1.13 ROUTED TO RTDCCC 84 13.33 17. 4. 4. 1.13	3 COMBINED AT	CPDA	962.	13.17	713	376		
HYDROGRAPH AT SUBEE 704. 12.92 210. 58. 56. 1.43 HYDROGRAPH AT CPECI 310. 14.75 197. 58. 56. 1.18 ROUTED TO RTDIEE 305. 15.50 193. 57. 54. 1.18 2 COMBINED AT CPEC 704. 12.92 376. 115. 110. 1.43 ROUTED TO RTEEEA 682. 13.42 372. 113. 109. 1.43 HYDROGRAPH AT SUBEA 607. 13.00 186. 47. 45. 1.30 2 COMBINED AT CPEA 1230. 13.25 538. 158. 153. 2.73 ROUTED TO RTEADC 1076. 14.50 518. 152. 147. 2.73 HYDROGRAPH AT SUBDC 545. 12.75 128. 32. 3184 2 COMBINED AT CPDC 1123. 14.42 583. 184. 177. 3.57 ROUTED TO RTDCCC 1028. 15.50 566. 175. 169. 3.57 HYDROGRAPH AT SUBDD 118. 12.33 17. 4. 413 ROUTED TO RTDDCCC 84. 13.33 ROUTED TO	ROUTED TO	RTDACC	701	14.00			362.	21.96
HYDROGRAPH AT CPEE1 310. 14.75 197. 58. 56. 1.18 ROUTED TO RTDIEE 305. 15.50 193. 57. 54. 1.18 2 COMBINED AT CPEC 704. 12.92 376. 115. 110. 1.43 ROUTED TO RTEEEA 682. 13.42 372. 113. 109. 1.43 HYDROGRAPH AT SUBEA 607. 13.00 186. 47. 45. 1.30 2 COMBINED AT CPEA 1230. 13.25 538. 158. 153. 2.73 ROUTED TO RTEADC 1076. 14.50 518. 152. 147. 2.73 HYDROGRAPH AT SUBDC 545. 12.75 128. 32. 3184 2 COMBINED AT CPDC 1123. 14.42 583. 184. 177. 3.57 ROUTED TO RTDCCC 1028. 15.50 566. 175. 169. 3.57 HYDROGRAPH AT SUBDD 118. 12.33 17. 4. 4. 413 ROUTED TO	HYDROGRAPH AT				706.	316.	305.	21.96
ROUTED TO RTDIEE 305. 15.50 193. 57. 54. 1.18 2 COMBINED AT CPEC 704. 12.92 376. 115. 110. 1.43 ROUTED TO RTEEEA 682. 13.42 372. 113. 109. 1.43 HYDROGRAPH AT SUBEA 607. 13.00 186. 47. 45. 1.30 2 COMBINED AT CPEA 1230. 13.25 538. 158. 153. 2.73 ROUTED TO RTEADC 1076. 14.50 518. 152. 147. 2.73 HYDROGRAPH AT SUBDC 545. 12.75 128. 32. 3184 2 COMBINED AT CPDC 1123. 14.42 583. 184. 177. 3.57 ROUTED TO RTDCCC 1028. 15.50 566. 175. 169. 3.57 HYDROGRAPH AT SUBDD 118. 12.33 17. 4. 4. 413 ROUTED TO	HYDROGRAPH AT	SUBEE	704.	12.92	210.	58.	56.	1.43
RTDIEE 305. 15.50 193. 57. 54. 1.18 2 COMBINED AT CPEC 704. 12.92 376. 115. 110. 1.43 ROUTED TO RTEEEA 682. 13.42 372. 113. 109. 1.43 HYDROGRAPH AT SUBEA 607. 13.00 186. 47. 45. 1.30 2 COMBINED AT CPEA 1230. 13.25 538. 158. 153. 2.73 ROUTED TO RTEADC 1076. 14.50 518. 152. 147. 2.73 HYDROGRAPH AT SUBDC 545. 12.75 128. 32. 3184 2 COMBINED AT CPDC 1123. 14.42 583. 184. 177. 3.57 ROUTED TO RTDCCC 1028. 15.50 566. 175. 169. 3.57 HYDROGRAPH AT SUBDD 118. 12.33 17. 4. 4. 1.13 ROUTED TO REDDCC 84 13.33 17. 4. 4. 1.13		CPEE1	310.	14.75	197.	58.	56.	1.18
ROUTED TO RTEEEA 682. 13.42 372. 113. 109. 1.43 HYDROGRAPH AT SUBEA 607. 13.00 186. 47. 45. 1.30 2 COMBINED AT CPEA 1230. 13.25 538. 158. 153. 2.73 ROUTED TO RTEADC 1076. 14.50 518. 152. 147. 2.73 HYDROGRAPH AT SUBDC 545. 12.75 128. 32. 3184 2 COMBINED AT CPDC 1123. 14.42 583. 184. 177. 3.57 ROUTED TO RTDCCC 1028. 15.50 566. 175. 169. 3.57 HYDROGRAPH AT SUBDD 118. 12.33 17. 4. 4. 413 ROUTED TO RTDCCC 84 13.33 17. 4. 4. 413		RTDIEE	305.	15.50	193.	57.	54.	1.18
HYDROGRAPH AT SUBEA 607. 13.00 186. 47. 45. 1.30 2 COMBINED AT CPEA 1230. 13.25 538. 158. 153. 2.73 ROUTED TO RTEADC 1076. 14.50 518. 152. 147. 2.73 HYDROGRAPH AT SUBDC 545. 12.75 128. 32. 3184 2 COMBINED AT CPDC 1123. 14.42 583. 184. 177. 3.57 ROUTED TO RTDCCC 1028. 15.50 566. 175. 169. 3.57 HYDROGRAPH AT SUBDD 118. 12.33 17. 4. 4. 1.13 ROUTED TO RTDCCC 84 13.33	2 COMBINED AT	CPEC	704.	12.92	376.	115.	110.	1.43
HYDROGRAPH AT SUBEA 607. 13.00 186. 47. 45. 1.30 2 COMBINED AT CPEA 1230. 13.25 538. 158. 153. 2.73 ROUTED TO RTEADC 1076. 14.50 518. 152. 147. 2.73 HYDROGRAPH AT SUBDC 545. 12.75 128. 32. 3184 2 COMBINED AT CPDC 1123. 14.42 583. 184. 177. 3.57 ROUTED TO RTDCCC 1028. 15.50 566. 175. 169. 3.57 HYDROGRAPH AT SUBDD 118. 12.33 17. 4. 4. 1.13 ROUTED TO RTDCCC 84 13.33	ROUTED TO	RTEEEA	682.	13.42	372.	, 113.	109.	1.43
2 COMBINED AT CPEA 1230. 13.25 538. 158. 153. 2.73 ROUTED TO RTEADC 1076. 14.50 518. 152. 147. 2.73 HYDROGRAPH AT SUBDC 545. 12.75 128. 32. 3184 2 COMBINED AT CPDC 1123. 14.42 583. 184. 177. 3.57 ROUTED TO RTDCCC 1028. 15.50 566. 175. 169. 3.57 HYDROGRAPH AT SUBDD 118. 12.33 17. 4. 4. 1.13 ROUTED TO RTDCCC 84 13.33	HYDROGRAPH AT	SUBEA	607.	13.00	186.	47.	45	
ROUTED TO RTEADC 1076. 14.50 518. 152. 147. 2.73 HYDROGRAPH AT SUBDC 545. 12.75 128. 32. 3184 2 COMBINED AT CPDC 1123. 14.42 583. 184. 177. 3.57 ROUTED TO RTDCCC 1028. 15.50 566. 175. 169. 3.57 HYDROGRAPH AT SUBDD 118. 12.33 17. 4. 4. 1.13 ROUTED TO RTDCCC 84 13.33	2 COMBINED AT	CPEA	1230	13 25				
HYDROGRAPH AT SUBDC 545. 12.75 128. 32. 3184 2 COMBINED AT CPDC 1123. 14.42 583. 184. 177. 3.57 ROUTED TO RTDCCC 1028. 15.50 566. 175. 169. 3.57 HYDROGRAPH AT SUBDD 118. 12.33 17. 4. 413 ROUTED TO RTDCCC 84 13.33	ROUTED TO						153.	2.73
2 COMBINED AT CPDC 1123. 14.42 583. 184. 177. 3.57 ROUTED TO RTDCCC 1028. 15.50 566. 175. 169. 3.57 HYDROGRAPH AT SUBDD 118. 12.33 17. 4. 4. 13 ROUTED TO RTDCCC 84 13.33	HYDROGRAPH AT			14.50	518.	152.	147.	2.73
ROUTED TO RTDCCC 1028. 15.50 566. 175. 169. 3.57 HYDROGRAPH AT SUBDD 118. 12.33 17. 4. 413 ROUTED TO RTDCCC 84 13.33	2 COMBINED AT	SUBDC	545.	12.75	128.	32.	31.	.84
RTDCCC 1028. 15.50 566. 175. 169. 3.57 HYDROGRAPH AT SUBDD 118. 12.33 17. 4. 4. 13 ROUTED TO RTDCC 84 13.33 17.	ROUTED TO	CPDC	1123.	14.42	583.	184.	177.	3.57
SUBDD 118. 12.33 17. 4. 413 ROUTED TO RTDDCC 84 13.33 17.		RTDCCC	1028.	15.50	566.	175.	169.	3.57
RTDDCC 84 13 33 17 .	HYDROGRAPH AT	SUBDD	118.	12.33	17.	4.	4.	.13
	ROUTED TO	RTDDCC	84.	13.33	17.	4.	4.	.13
HYDROGRAPH AT SUBCC 691. 12.67 146. 38. 3798	HYDROGRAPH AT	SUBCC	691.	12.67	146.	38.	37	
3 COMBINED AT	3 COMBINED AT	CPCC1	1042.	15.50				
2 COMBINED AT CPCC2 1504 15 50	2 COMBINED AT	CPCC2					208.	4.68
ROUTED TO 26.64	ROUTED TO				1210.	516.	497.	26.64
RTCCCB 1631. 16.42 1202. 469. 452. 26.64 HYDROGRAPH AT	HYDROGRAPH AT	RTCCCB	1631.	16.42	1202.	469.	452.	26.64
SUBLB 171. 12.67 34. 9. 825 ROUTED TO	ROUTED TO	SUBLB	171.	12.67	34.	9.	8.	.25
RTLBHA 130. 13.58 34. 9. 825		RTLBHA	130.	13.58	34.	9.	8.	.25
HYDROGRAPH AT SUBHA 356. 12.42 59. 15. 1542	HYDROGRAPH AT	SUBHA	356.	12.42	59.	15.	15.	.42
2 COMBINED AT CPHA 354. 12.42 91. 24. 2367	2 COMBINED AT	СРНА	354.	12.42	91.	24.	23.	. 67
ROUTED TO RTHAGD 216. 13.92 88. 23. 2267	ROUTED TO	RTHAGD	216.	13.92	88.	23.	22	
HYDROGRAPH AT SUBKC 367 12 58 67 12 58	HYDROGRAPH AT	SUBKC	. 367.					
ROUTED TO	ROUTED TO							.52
RTKCGD 247. 13.75 65. 17. 1652 HYDROGRAPH AT	HYDROGRAPH AT				65.	17.	16.	.52
SUBGD 592. 12.67 135. 34. 3377	·	SUBGD	592.	12.67	135.	34.	33.	.77

3 COM	MBINED AT							
3 COF		CPOD3	470.	16.17	320.	114.	110.	13.14
+	DIVERSION TO	DIOC	85.	16.17	58.	21.	20.	13.14
+	HYDROGRAPH AT	CPOD4	385.	16.17	263.	93.	90.	13.14
•	ROUTED TO	RTODMC	349.	17.42	253.	89.	86.	13.14
+	HYDROGRAPH AT	SUBMC	643.	13.00	221.	57.	55.	1.00
+	3 COMBINED AT	CPMC1	983.	14.17	603.	203.	196.	16.40
+	DIVERSION TO	DIMB	375.	14.17	231.	78.	75.	16.40
	HYDROGRAPH AT	CPMC2	607.	14.17	372.	125.		
+	ROUTED TO	RTMCIE	595.				120.	16.40
+	HYDROGRAPH AT			14.50	369.	123.	119.	16.40
	HYDROGRAPH AT	SUBEB	137.	12.42	24.	6.	6.	.14
+	2 COMBINED AT	CPEB1	451.	13.00	211.	58.	56.	2.75
+	ROUTED TO	CPEB2	522.	12.83	234.	64.	62.	2.89
+	HYDROGRAPH AT	RTEBIE	506.	13.17	232.	63.	61.	2.89
+		SUBIE	201.	12.83	62.	16.	15.	.26
+	2 COMBINED AT	CPIE1	680.	13.08	289.	79.	76.	3.15
+	2 COMBINED AT	CPIE2	1015.	14.25	628.	198.	191.	16.80
+	ROUTED TO	RTIEIB	986.	15.00	611.	190.	183.	16.80
+	HYDROGRAPH AT	SUBOC	421.	12.25	67.	19.	18.	.31
+	HYDROGRAPH AT	CPOC1	85.	16.17	58.	21.	20.	13.14
+	ROUTED TO	RTDIOC	67.	18.58	53.	19.	18.	13.14
+	2 COMBINED AT	CPOC2	421.	12.25	95.	39.	38.	.31
+	ROUTED TO	RTOCMB	261.	13.33	88.	37.	35.	.31
+	HYDROGRAPH AT	SUBMB	631.	12.92	210.	53.	51.	.99
+	HYDROGRAPH AT	СРМВ	375.	14.17	231.	78.	75.	16.40
+	ROUTED TO	RTDIMB	352.	15.25	223.	74.	71.	16.40
+	3 COMBINED AT	CPMB1	782.	13.25	439.	155.	150.	
•	ROUTED TO	RTMBIB	724.	13.83	433.			18.19
. .	HYDROGRAPH AT	SUBIB				150.	145.	18.19
	3 COMBINED AT		326.	12.92	102.	26.	25.	.46
	ROUTED TO	CPIB	1715.	14.00	1076.	363.	350.	18.56
•	HYDROGRAPH AT	RTIBIA	1715.	14.08	1076.	362.	349.	18.56
		SUBME	218.	12.67	45.	12.	11.	.32

ROUTED TO	RTMEIA	165.	13.50	45.	12.	11.	.32
HYDROGRAPH AT	SUBIA	281.	12.50	49.	13.	12.	.31
3 COMBINED AT	CPIA	1831.	14.00	1131.	384.	370.	19.19
ROUTED TO	RTIAHB	1827.	14.17	1130.	381.	367.	19.19
HYDROGRAPH AT	SUBLD	314.	12.25	48.	15.	14.	.28
ROUTED TO	RTLDMA	297.	12.50	48.	15.	14.	.28
HYDROGRAPH AT	SUBMA	185.	12.50	33.	8.	8.	.25
2 COMBINED AT	СРМА	478.	12.50	81.	23.	22.	.53
ROUTED TO	RTMAHB	388.	13.08	81.	22.	22.	.53
HYDROGRAPH AT	SUBHB	271.	12.50	46.	12.	11.	.34
3 COMBINED AT	СРНВ	1944.	14.08	1223.	412.	397.	20.06
ROUTED TO	RTHBDA	1939.	14.17	1222.	410.	394.	20.06
HYDROGRAPH AT	SUBED	250.	13.00	76.	19.	18.	.48
ROUTED TO	RTEDID	120.	16.25	63.	18.	17.	.48
HYDROGRAPH AT	SUBID	340.	12.83	84.	21.	20.	.56
2 COMBINED AT	CPID	337.	12.83	126.	39.	37.	1.04
ROUTED TO	RTIDIC	299.	13.67	119.	38.	36.	1.04
HYDROGRAPH AT	SUBIC	244.	13.00	74.	19.	18.	.53
2 COMBINED AT	CPIC	483.	13.58	177.	56.	54.	1.57
ROUTED TO	RTICDA	433.	14.33	171.	54.	52.	1.57
HYDROGRAPH AT	SUBDA	267.	12.58	53.	14.	13.	.33
3 COMBINED AT	CPDA	2325.	14.25	1392.	470.	453.	21.96
ROUTED TO	RTDACC	2123.	15.58	1354.	439.	423.	21.96
HYDROGRAPH AT	SUBEE	704.	12.92	210.	58.	56.	1.43
HYDROGRAPH AT	CPEE1	310.	14.75	197.	58.	56.	1.18
ROUTED TO	RTDIEE	305.	15.50	193.	57.	54.	1.18
2 COMBINED AT	CPEC	704.	12.92	376.	115.	110.	1.43
ROUTED TO	RTEEEA	682.	13.42	372.	113.	109.	1.43
HYDROGRAPH AT	SUBEA	607.	13.00	186.	47.	45.	1.30
2 COMBINED AT	CPEA	1230.	13.25	538.	158.	153.	2.73
ROUTED TO	RTEADC	1076.	14.50	518.	152.	147.	2.73

HYDROGRAPH AT	SUBDC	545.	12.75	128.	32.	31.	.84
2 COMBINED AT	CPDC	1123.	14.42	583.	184.	177.	3.57
ROUTED TO	RTDCCC	1028.	15.50	566.	175.	169.	3.57
HYDROGRAPH AT	SUBDD	118.	12.33	17.	4.	4.	.13
ROUTED TO	RTDDCC	84.	13.33	17.	4.	4.	.13
HYDROGRAPH AT	SUBCC	691.	12.67	146.	38.	37.	. 98
3 COMBINED AT	CPCC1	1042.	15.50	636.	216.	208.	4.68
2 COMBINED AT	CPCC2	3068:	15.58	1872.	636.	613.	26.64
ROUTED TO	RTCCCB	2979.	16.50	1857.	606.	583.	26.64
HYDROGRAPH AT	SUBLB	171.	12.67	34.	9.	8.	.25
ROUTED TO	RTLBHA	130.	13.58	34.	9.	8.	.25
HYDROGRAPH AT	SUBHA	356.	12.42	59.	15.	15.	.42
2 COMBINED AT	СРНА	354.	12.42	91.	24.	23.	. 67
ROUTED TO	RTHAGD	216.	13.92	88.	23.	22.	. 67
HYDROGRAPH AT	SUBKC	367.	12.58	67.	17.	16.	.52
ROUTED TO	RTKCGD	247.	13.75	65.	17.	16.	.52
HYDROGRAPH AT	SUBGD	592.	12.67	135.	34.	33.	.77
HYDROGRAPH AT	SUBGC	243.	12.25	31.	9.	8.	.21
ROUTED TO	RTGCGD	125.	13.00	31.	9.	8.	.21
4 COMBINED AT	CPGD	696.	13.58	308.	81.	78.	2.17
ROUTED TO	RTGDCB	627.	14.50	294.	80.	77.	2.17
HYDROGRAPH AT	SUBCB	540.	12.92	172.	44.	42.	.74
2 COMBINED AT	СРСВ	783.	14.00	441.	123.	118.	2.91
ROUTED TO	RTCBCA	735.	15.50	421.	118.	114.	2.91
HYDROGRAPH AT	SUBGB	237.	12.25	32.	9.	8.	.23
ROUTED TO	RTGBCA	81.	14.42	31.	8.	8.	.23
HYDROGRAPH AT	SUBCA	587.	13.08	223.	57.	55.	.97
3 COMBINED AT	CPCA.	893.	15.17	613.	183.	176.	4.11
ROUTED TO	RTCABC	886.	15.50	608.	181.	174.	4.11
HYDROGRAPH AT	SUBBC	235.	13.17	81.	20.	20.	.61
2 COMBINED AT	CPBC	914.	15.42	675.	200.	193.	4.72

é,	3 COMBINED AT	CDUM	3569.	16.42	2694.	1058.	1019.	48.65
+	HYDROGRAPH AT	SUBLC	109.	12.33	14.	4.	3.	.10
+	ROUTED TO	RTLCLA	55.	13.42	14.	4.	3.	.10
+	HYDROGRAPH AT	SUBLA	266.	12.83	70.	18.	17.	.50
+	2 COMBINED AT	CPLA	293.	13.00	84.	21.	21.	. 60
+	ROUTED TO	RTLAKB	281.	13.33	83.	21.	21.	.60
+	HYDROGRAPH AT	SUBKB	322.	12.50	57.	15.	14.	.42
+	2 COMBINED AT	СРКВ	390.	13.08	138.	36.	34.	1.02
+	HYDROGRAPH AT	SUBGA	258.	12.08	18.	5.	5.	.14
+	3 COMBINED AT	CDUM	3577.	16.42	2714.	1091.	1051.	49.81
+	HYDROGRAPH AT	SUBBB	179.	12.75	43.	11.	10.	.25
+	ROUTED TO	RTBBBA	108.	14.58	41.	11.	10.	.25
+	HYDROGRAPH AT	SUBBA	161.	12.92	48.	13.	12.	.34
+	2 COMBINED AT	CPBA	160.	12.92	86.	23.	22.	.59
+	HYDROGRAPH AT	RTBAAA	139.	13.58	61.	16.	15.	.50
+	2 COMBINED AT	CPAA	273.	13.17	146.	39.	37.	1.09

^{***} NORMAL END OF HEC-1 ***

		and the second s
A State of the		
		The state of the s
		1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1
•		
	보다고 병하는 남편한 중요한 아니라를 하다.	
*		
		•
•		
•		
	요즘가 되면 하는 요요. 전시 원이 나는 그는 그 그 그	
		了一个女子的一个女子的一个女子。 第二章
		A SALES TENED IN THE SALES
	The state of the s	

3 COMBINED AT	CPOD3	.53	1		106.	211.	267.	368.	471. 16.17	579.
DIVERSION TO				TIME	12.67					15.92
•	DIOC	.53	1	FLOW TIME	19. 12.67	38. 12.67	48. 12.67	66. 12.67	85. 16.17	104. 15.92
HYDROGRAPH AT +	CPOD4	.53	1	FLOW TIME	87. 12.67	173. 12.67	219. 12.67	301. 12.67	386. 16.17	475. 15.92
ROUTED TO +	RTODMC	.53	1	FLOW TIME	42. 15.08	101. 14.58	141. 14.25	227. 18.08	351. 17.42	438. 17.08
				STAGE	AGES IN FEET .85 15.08	1.17	1.30	1.52	1.76	1.90
HYDROGRAPH AT				TIME	15.08			18.08	17.42	17.08
+ 3 COMBINED AT	SUBMC	1.00	1	FLOW TIME	150. 13.00	305. 13.00	387. 13.00	532. 13.00	618. 13.00	674. 13.00
+	CPMC1	2.99	1	FLOW TIME	151. 13.00	352. 14.58	504. 14.33	802. 14.17	994. 14.08	1121. 14.08
DIVERSION TO	DIMB	2.99	1	FLOW TIME	59. 13.00	136. 14.58	194. 14.33	307. 14.17	380 <i>.</i> 14.08	428. 14.08
HYDROGRAPH AT +	CPMC2	2.99	1	FLOW TIME	92. 13.00	216. 14.58	311. 14.33	495. 14.17	615. 14.08	693. 14.08
ROUTED TO +	RTMCIE	2.99	1	FLOW TIME	77. 13.75	205. 15.00	295. 14.75	480. 14.50	602. 14.42	682. 14.42
			1	STAGE	AGES IN FEET 1.02	1.41	1.58	1.87	2.03 14.42	2.12
HYDROGRAPH AT				TIME						
+	SUBEB	.14	1	FLOW TIME	34. 12.50	65. 12.42	81. 12.42	111. 12.42	129. 12.42	141. 12.42
HYDROGRAPH AT +	CPEB1	.00	1	FLOW TIME	105. 13.08	217. 13.00	274. 13.00	377. 13.00	438. 13.00	478. 13.00
2 COMBINED AT	CPEB2	.14	1	FLOW TIME	120. 12.83	248. 12.83	314. 12.83	434. 12.83	506. 12.83	553. 12.83
ROUTED TO +	RTEBIE	.14	1	FLOW TIME	107. 13.50	237. 13.25	302. 13.25	420. 13.25	491. 13.17	
			1	PEAK STA STAGE	GES IN FEET 1.18 13.50	1.52	1.64	1.84	1.95	2.01
HYDROGRAPH AT				TIME						
+ 3 COMBINED AT	SUBIE	.26	1	flow Time	53. 12.83	101. 12.83	124. 12.83	166. 12.83	191. 12.83	207. 12.83
+	CPIE	3.39	1	FLOW TIME	211. 13.50	477. 13.33	612. 13.25	864. 13.25	1010. 13.25	1123. 14.08
ROUTED TO +	RTIEIB	3.39	1	FLOW TIME	170. 15.08	412. 14.50	545. 14.42	796. 14.33	968. 14.83	1098. 14.83
÷				PEAK STAG STAGE TIME	GES IN FEET * 1.41 15.08	1.90 14.50	2.11 14.42	2.43 14.33	2.62 14.83	2.75 14.83
HYDROGRAPH AT +	SUBOC	.31	1	FLOW TIME	105. 12.33	200. 12.25	252. 12.25	345. 12.25	400. 12.25	435. 12.25
HYDROGRAPH AT +	CPOC1	.00	1	FLOW TIME	19. 12.67	38. 12.67	48. 12.67	66. 12.67	85. 16.17	104. 15.92
ROUTED TO	RTDIOC	.00			6. 16.75					
*****			** [PEAK STAC	SES IN FEET *	*				

ű:			1	STAGE TIME	.43 16.83	.64 16.00	.76 15.83			
2 COMBINED AT	CPOC2	.31	•	Bt on				221,2		17.92
ROUTED TO	CPOC2	.31	1	FLOW TIME	106. 12.33	200. 12.25	252. 12.25			
+	RTOCMB	.31	1	FLOW TIME	39. 14.25	91. 13.83	124. 13.75		242. 13.42	
HYDROGRAPH AT			1	PEAK STAG STAGE TIME	ES IN FEET .76 14.25	1.04	1.15 13.75	1.33 13.42		
HYDROGRAPH AT	SUBMB	. 99	1	FLOW TIME	133. 13.08	292. 13.08	374. 13.08	520. 13.00	606. 13.00	
ROUTED TO	СРМВ	.00	1	FLOW TIME	59. 13.00	136. 14.58	194. 14.33	307. 14.17	380. 14.08	
+	RTDIMB	.00			41. 17.42		172. 15.67	282. 15.33	355. 15.17	
			1	PEAK STAGE STAGE	.84 17.42	1.24		1.63	1.76	1.84
3 COMBINED AT				TIME	17.42	16.08	15.67	15.33	15.17	15.17
+ ROUTED TO	CPMB1	1.30	. 1	FLOW TIME	135. 13.08	313. 13.42	429. 13.42	662. 13.42	799. 13.25	895. 13.17
+	RTMBIB	1.30	1	FLOW TIME PEAK STAGE	14.17		397. 13.92	608. 13.83	740. 13.83	826. 13.75
HYDROGRAPH AT			1	STAGE TIME	1.29 14.17	1.77 14.00	1.98 13.92	2.31 13.83	2.50 13.83	2.60 13.75
+ 3 COMBINED AT	SUBIB	.46	1	FLOW TIME	84. 12.92	162. 12.92	200. 12.83	269. 12.92	311. 12.92	338. 12.92
+ ROUTED TO	CPIB	5.15	1	FLOW TIME	266. 15.00	700. 14.42	959. 14.25	1449. 14.08	1751. 14.00	1949. 14.00
+	RTIBIA	5.15	1	FLOW TIME PEAK STAGES	15.08	14.42	957. 14.25			1946. 14.08
HYDROGRAPH AT			1	STAGE TIME	1.24 15.08	1.68 14.42	1.87 14.25	2.17 14.08	2.33 14.08	2.43 14.08
+ ROUTED TO	SUBME	.32	1	flow Time	33. 12.67	82. 12.67	114. 12.67	169. 12.67	205. 12.67	
+	RTMEIA	.32	1	FLOW TIME PEAK STAGES	17. 14.33	13.92	74. 13.83	121. 13.67	152. 13.50	174. 13.42
HYDROGRAPH AT		•	1	STAGE TIME	.55 14.33	.85 13.92	1.00 13.83	1.17 13.67	1.26 13.50	1.31 13.42
+ 3 COMBINED AT	SUBIA	.31	1	FLOW TIME	47. 12.50	111. 12.50	150. 12.50	223. 12.50	265. 12.50	292. 12.50
+ ROUTED TO	CPIA	5.78	1	FLOW TIME	279. 15.00	743. 14.42	1022. 14.25	1547. 14.08.	1875. 14.00	2085. 14.00
.*	RTIAHB	5.78	1	FLOW TIME PEAK STAGES	277. 15.25	739. 14.58	1018. 14.42	1542. 14.17	1870. 14.17	2081. 14.08
HYDROGRAPH AT			1	STAGE			2.26 14.42	2.61 14.17	2.79 14.17	2.90 14.08
ROUTED TO	SUBLD	.28	1	FLOW TIME	58. 12.33	129. 12.33	168. 12.33	247. 12.25	295. 12.25	326. 12.25
+	RTLDMA	. 28	1	FLOW	49.	112.	152.	227.	275.	311.
DIBBLE & ASSOCI	ITES									

*** PEAR STAGES IN FEET *** *** PEAR STAGES	1. 500 2. 600 3. 88
TIME 12.58 12.50	1. 500 2. 600 3. 88
SUBMA 1.25 1 FLOW 40. 80. 103. 116, 174, 191 CPMA	22. 600 3. 88
*** COMBINED AT CPMA	22. 600 3. 88
*** CPMA	3.8
ROUTED TO ** PEAK STAGES IN FEET ** 1 STAGE 1.30 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.4	3.8
** RTMAHB	0
HYDROGRAPH AT TOTAL PLAN STAGES IN FEET *** *** PEAK STAGES 10 101. 141. 211. 255. 262 *** TIME 13.67 13.42 13.33 13.17 13.08 13.01 *** TIME 13.67 13.42 13.33 13.17 13.08 13.01 *** TIME 13.67 13.42 13.33 13.17 13.08 13.01 *** TIME 13.67 12.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50 *** TIME 15.25 14.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50 *** TIME 15.25 14.50 14.33 14.17 14.08 14.00 *** PEAK STAGES IN FEET *** *** PEAK STAGES	0
HYDROGRAPH AT ** ** ** ** ** ** ** ** **	o
#YDROGRAPH AT ** SUBHB	ċ
** SUBHB	0
** PEAK STAGES IN FEET *** ** SUBED ** PEAK STAGES IN FEET *** ** PEAK STAGES IN FEE	0
** CPHB 6.65	0
ROUTED TO ** PEAK STAGES IN FEET *** ** PEAK STAGES IN FEET *** ** PLOW 15.33 14.67 14.42 14.25 14.17 14.08 ** PEAK STAGES IN FEET *** 1 STAGE 1.30 1.80 2.02 2.35 2.53 2.64 ** TIME 15.33 14.67 14.42 14.25 14.17 14.08 ** PEAK STAGES IN FEET *** 1 STAGE 1.30 1.80 2.02 2.35 2.53 2.64 ** PEAK STAGES IN FEET *** ** SUBED 48 1 FLOW 15.8 114 143. 200. 237. 261. ** TIME 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 ** PEAK STAGES IN FEET *** 1 STAGE 19.17 17.83 17.17 16.58 16.33 16.25 ** PEAK STAGES IN FEET *** 1 STAGE 19.17 17.83 17.17 16.58 16.33 16.25 ** PEAK STAGES IN FEET *** 1 STAGE 19.17 17.83 17.17 16.58 16.33 12.83	0
** PEAK STAGES IN FEET *** **	
#* PEAK STAGES IN FEET *** 1 STAGE 1.30 1.80 2.02 2.35 2.53 2.64 HYDROGRAPH AT * SUBED .48 1 FLOW 58. 114. 143. 200. 237. 261. TIME 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 ROUTED TO * RTEDID .48 1 FLOW 16. 39. 52. 86. 111. 127. TIME 19.17 17.83 17.17 16.58 16.33 16.25 ** PEAK STAGES IN FEET *** 1 STAGE 1.9.17 17.83 17.17 16.58 16.33 16.25 HYDROGRAPH AT * SUBID .56 1 FLOW 49. 129. 179. 269. 322. 357. TIME 12.83 12.83 12.83 12.83 12.83 12.83 12.83 12.83 12.83 12.83 ** PEAK STAGES IN FEET *** 1 STAGE 1.9.17 17.83 17.17 16.58 16.33 12.83	
HYDROGRAPH AT ** SUBED	3
#YDROGRAPH AT ** SUBED	
ROUTED TO ** PEAK STAGES IN FEET ** ** PEAK ST	
ROUTED TO ** PEAK STAGES IN FEET ** ** PEAK ST	•
#* PEAK STAGES IN FEET *** 1 STAGE)
#* PEAK STAGES IN FEET *** 1 STAGE	
HYDROGRAPH AT ** SUBIC** *** PEAK STAGES IN FEET*** *** PEAK STAGES IN FEET** 1 STAGE	
HYDROGRAPH AT + SUBID	! :
TIME 12.83 1	,
2 COMBINED AT + CPID 1.04 1 FLOW 49. 129. 179. 269. 322. 357. TIME 12.83 12.8	
ROUTED TO * RTIDIC 1.04 1 FLOW 32. 99. 146. 232. 284. 318. TIME 14.58 14.17 13.92 13.75 13.67 13.67 13.67 ** PEAK STAGES IN FEET ** 1 STAGE 62 .96 1.11 1.30 1.39 1.45 13.67 13.67 HYDROGRAPH AT * SUBIC .53 1 FLOW 30. 88. 125. 192. 231. 256. TIME 13.00 13.00 13.00 13.00 13.00 13.00	
ROUTED TO * RTIDIC 1.04 1 FLOW 32. 99. 146. 232. 284. 318. TIME 14.58 14.17 13.92 13.75 13.67 13.67 13.67 ** PEAK STAGES IN FEET ** 1 STAGE 62 .96 1.11 1.30 1.39 1.45 13.67 13.67 HYDROGRAPH AT * SUBIC .53 1 FLOW 30. 88. 125. 192. 231. 256. TIME 13.00 13.00 13.00 13.00 13.00 13.00	
** PEAK STAGES IN FEET ** 1 STAGE	
HYDROGRAPH AT **SUBIC** SUBIC** **SUBIC** **SUBIC**	
HYDROGRAPH AT * SUBIC .53 1 FLOW 30. 88. 125. 192. 231. 256. TIME 13.00 13.00 13.00 13.00 13.00 13.00	
+ SUBIC .53 1 FLOW 30. 88. 125. 192. 231. 256. TIME 13.00 13.00 13.00 13.00 13.00 13.00 2 COMBINED AT	
2 COMBINED AT	
TIME 14.42 13.92 13.83 13.58 13.58 13.58 13.58	
ROUTED TO + RTICDA 1.57 1 FLOW 33. 121. 186 327 411 467	
+ RTICDA 1.57 1 FLOW 33. 121. 186. 327. 411. 467. TIME 16.17 15.17 14.83 14.50 14.33 14.33	
** PEAK STAGES IN FEET ** 1 STAGE .64 1.07 1.25 1.49 1.60 1.67	
1 STAGE .64 1.07 1.25 1.49 1.60 1.67 TIME 16.17 15.17 14.83 14.50 14.33 14.33	
HYDROGRAPH AT + SUBDA .33 1 FLOW 42. 103. 142. 211. 252. 278.	
TIME 12.58 12.58 12.58 12.58 12.58 12.58 12.58 12.58	
+ CDD3 0.55 1 Provi	
TIME 15.42 14.75 14.50 14.33 14.25 14.17	
+ RTDACC 8.55 1 FLOW 277. 777. 1104. 1760. 2175. 2448.	
TIME 17.42 16.33 16.08 15.83 15.67 15.67	

1 3			1	PEAK STA STAGE TIME	AGES IN FEET	3.04	3.50			4.85
HYDROGRAPH AT	aunne				17.42	16.33	16.08	15.83	15.67	15.67
·	SUBEE	1.43	1	TIME	102. 12.92	265. 12.92	363. 12.92	554. 12.92	673. 12.92	749. 12.92
HYDROGRAPH AT	CPEE1	.00	1		45.	104.	146.	233.	291.	329.
ROUTED TO				TIME	12.92		15.00	14.83		
+	RTDIEE	.00	1	FLOW TIME	36. 17.33	101. 16.17	144. 15.92	230. 15.58	287. 15.50	324. 15.42
			1	STAGE	GES IN FEET	.80	.89	1.07	1.15	1.20
2 COMBINED AT				TIME	17.33	16.17	15.92	15.58	15.50	
+	CPEC	1.43	1	flow Time	102. 12.92	265. 12.92	363. 12.92	554. 12.92	673. 12.92	
ROUTED TO	RTEEEA	1.43	1	FLOW			346.	532		727.
			*	TIME * PEAK STAG	13.83 GES IN FEET	13.58	13.50	13.42	13.42	13.42
			1	STAGE TIME	.83 13.83	1.18 13.58	1.32 13.50	1.54 13.42	1.66 13.42	1.73 13.42
HYDROGRAPH AT	SUBEA	1.30	1	FLOW						
2 COMBINED AT				TIME	13.00	13.00	334. 13.00	13.00	13.00	642. 13.00
+	CPEA	2.73	1	flow Time	169. 13.67	459. 13.50	631. 13.33	972. 13.25	1186. 13.25	1320. 13.25
ROUTED TO	RTEADC	2.73	1	FLOW						
			**	TIME PEAK STAG	15.58 ES IN FEET		531. 14.75	14.58	14.50	14.42
			1	STAGE TIME	1.37	1.99 14.83	2.26 14.75	2.69 14.58	2.92 14.50	3.06 14.42
HYDROGRAPH AT	SUBDC	.84	1	FLOW	90.	218.	297.	136		
2 COMBINED AT				TIME	12.75	218. 12.75	12.75	12.75	519. 12.75	574. 12.75
+	CPDC	3.57	1	FLOW TIME	125. 15.58	381. 14.83		877. 14.50		1221. 14.42
ROUTED TO	RTDCCC	3.57	1	FLOW	100.	333.	486.	793.	000	
			**	TIME	17.75 ES IN FEET	16.25	16.00	15.67	988. 15.50	1118. 15.50
			1	STAGE TIME		1.86	2.13 16.00	2.56 15.67	2.79 15.50	2.93 15.50
HYDROGRAPH AT	SUBDD	.13	1	FLOW	12.	41.	5.0		110.	
ROUTED TO					12.42	12.42	58. 12.33	12.33		122. 12.33
+	RTDDCC	.13	1	FLOW TIME	5. 14.42	23. 13.75	36. 13.50	62. 13.33	77. 13.33	86. 13 33
			**	PEAK STAGE	S IN FEET *					
HYDROGRAPH AT				TIME	.25 14.42	13.75	13.50	13.33	.73 13.33	.77 13.33
+	SUBCC	.98	1	FLOW TIME	101. 12.67	257. 12.67	358. 12.67	547. 12.67	659. 12.67	731.
3 COMBINED AT	CPCC1	4.68	1	FLOW	101.	337				
2 COMBINED AT			_	TIME	12.67		495. 15.92	809. 15.67	1007. 15.50	1139. 15.50
+	CPCC2	13.23	1	FLOW TIME	375. 17.58	1113. 16.33	1593. 16.00	2561. 15.75	3174.	3579.
ROUTED TO	RTCCCB	13.23	1		361.				15.58	15.58
				TIME	18.83	1073. 17.33	1539. 17.08	2483. 16.67	3086. 16.50	
			- *	PEAK STAGES	S IN FEET *	•				

- 4	HYDROGRAPH AT	,			I STAGE TIME	1.89 18.8	5 2.70 3 17.3	9 3.2 3 17.08	1 3.89 16.6	9 4.25 7 16.50	5 4.47 0 16.42
	+	SUBLB	. 25	i ;	1 FLOW TIME	38. 12.67	75. 12.67	. 96. 7 12.67	136.	161. 12.67	
	ROUTED TO	RTLBHA	.25	1	L FLOW TIME			64. 13.83			136.
				1	* PEAK STA STAGE TIME	GES IN FFF	т **	.92			
	HYDROGRAPH AT				11115	14.25	13.92	13.83	13.67	13.58	13.58
	+ 2 COMBINED AT	SUBHA	.42	1	FLOW TIME	58. 12.50	139. 12.50	191. 12.42	282. 12.42	337. 12.42	372. 12.42
	+		.67	1	FLOW TIME		139.	191.	282.	337.	372.
	ROUTED TO	RTHAGD	.67	1	FLOW TIME	22. 15.50	63.	98.			
	HYDROGRAPH AT			1	STAGE TIME	.72 15.50	1.07 14.42	1.23 14.17	1.47 14.00	1.60 13.92	1.67 13.83
	+ ROUTED TO	SUBKC	.52	1	FLOW TIME	63. 12.58	147. 12.58	199. 12.58	289. 12.58	347. 12.58	384. 12.58
	+	RTKCGD	.52	1	FLOW TIME	26. 14.92			178. 13.83		
				**	PEAK STAGE	CC TM DDDm					
	HYDROGRAPH AT				TIME	.61 14.92	.95 14.42	1.09 14.17	1.28 13.83	1.38 13.75	1.44 13.67
	HYDROGRAPH AT	SUBGD	.77	1	FLOW TIME	103. 12.67	249. 12.67	333. 12.67	478. 12.67	565. 12.67	621. 12.67
	ROUTED TO	SUBGC	.21	1	FLOW TIME	29. 12.33	89. 12.25	120. 12.25	187. 12.25	227. 12.25	252. 12.25
		RTGCGD	.21	1		9. 13.83	34	40		112.	133. 13.00
				**	PEAK STAGES	S TN FFFM .				13.00	13.00
	4 COMBINED AT			1	STAGE TIME	.50 13.83	.83 13.42	.96 13.33	1.17 13.17	1.28 13.00	1.34 13.00
F	ROUTED TO	CPGD	2.17	1	FLOW TIME	105. 12.67	258. 12.67	347. 12.67	521. 12.75	658. 13.58	763. 13.58
+		RTGDCB	2.17	1	FLOW TIME	49. 16.58	166. 14.58	258. 14.92	458. 14.58	595. 14.50	686. 14.42
				1	PEAK STAGES STAGE TIME			1.82 14.92	2.25 14.58	2.48	2.62
+ +	YDROGRAPH AT	SUBCB	.74		FLOW TIME	124.	259.	327.		14.50 518.	14.42 563.
+	3 COMBINED AT	CPCB	16.14	1	FLOW	12.92 397.	12.92	12.92	12.92	12.92	12.92
RC +	OUTED TO	P.T.C.D.C.			TIME						3768. 16.33
•		RTCBCA	16.14		TIME	20.67	18.83				3586. 17.58
יים	(DBOCDADI) am			1 5	CAK STAGES STAGE SIME	2.24	3.41	3.95 18.33			5.60 17.58
+	DROGRAPH AT	SUBGB	.23		LOW IME	24. 12.33	84. 12.33			221.	247.
RO	UTED TO									12.25	12.25

•				TIME	16.50	15.33	15.00	14.67	14.42	14.33
•			• 1	* PEAK STAGE	GES IN FEET	••				
			•	TIME	16.50	15.33	.77 15.00	.98 14.67		
HYDROGRAPH AT	SUBCA		1	FLOW	163	20.				
		.,,	•	TIME	153. 13.17	13.08	364. 13.08	489. 13.08	565. 13.08	614. 13.08
3 COMBINED AT	CDCD	17.34								
•	CPCA	17.34	1	flow Time	377. 20.67	1102. 18.83	1585. 18.33	2562. 17.83		
ROUTED TO										17.30
+	RTCABC	17.34	1	FLOW TIME	372. 21.25	1092.	1569.	2540. 18.17	3167.	
			*:		ES IN FEET		10.75	18.17	18.00	17.92
			1	STAGE	1.96 21.25	2.96	3.40	4.09	4.46	4.67
HYDROGRAPH AT				TIME	21.25	19.25	18.75	18.17	18.00	17.92
+	SUBBC	.61	1	FLOW	25.	80.	116.	192	222	247.
				TIME	25. 13.17	13.17	13.17	13.17	13.17	13.17
2 COMBINED AT	CPBC	17.95	1	FLOW	272	1000				
			_	TIME	372. 21.25	19.25	18.75	2543. 18.17		
3 COMBINED AT	CDUM	52.73		57.04						
·	CDOM	52.73	1	TIME	638. 13.42	1524. 13.33	2115. 18.58	3761. 18.42	4909. 18.00	5672. 17.92
HYDROGRAPH AT									10.00	17.52
+	SUBLC	.10	1	FLOW TIME	21. 12.33	46. 12.33	60.	86. 12.33	102.	
ROUTED TO										
+	RTLCLA	.10	1	FLOW	7. 14.00	18.	26.	40.	51.	57.
				TIME			13.58	13.42	13.42	13.33
			1	PEAK STAGE STAGE	.33 14.00	** .53	.61	. 74	.80	.84
				TIME	14.00	13.67	13.58	13.42	13.42	13.33
HYDROGRAPH AT	SUBLA	.50	1	FLOW	45	106	144	212		
			-	TIME	45. 12.92	12.83	12.83	12.83	12.83	278. 12.83
2 COMBINED AT	CPLA	60	,	m. a						
•	CFLA	. 80	1	flow Time	46. 12.92	109. 12.92	150. 12.92	227. 13.00	277. 13.00	308. 13.00
ROUTED TO										
+	RTLAKB	.60	1	FLOW TIME	39. 13.75	99. 13.58	140. 13.50	215. 13.42	265. 13.33	
•			**	PEAK STAGE	S IN FEFT #	. *				
			1	STAGE TIME	.65	.96 13.58	1.08	1.26	1.33	
HYDROGRAPH AT				111111	13.75	13.58	13.50	13.42	13.33	13.33
+	SUBKB	.42	1	FLOW	34.	112.	159.	248.	303.	337.
2 200071112				TIME	12.58	12.50	12.50	12.50	12.50	
2 COMBINED AT	СРКВ	1.02	1	FLOW	43.	121.	179	290	367.	422
				TIME	13.67	13.33	13.17	12.92	13.08	13.00
HYDROGRAPH AT	SUBGA	.14	1	FLOW	20.	22				
		• • • •	•	TIME	12.08	93. 12.08	132. 12.08	200. 12.08	241. 12.08	266. 12.08
3 COMBINED AT	an									
	CDUM	53.89	1	FLOW TIME	680. 13.42	1646. 13.33			4916. 18.00	
HYDROGRAPH AT					ė.			20112	10.00	17.92
+	SUBBB	.25	1	FLOW TIME	29. 12.75	71. 12.75	97.	142.	169.	186.
ROUTED TO				TATIL	12.75	12.75	12.75	12.75	12.75	12.75
+	RTBBBA	.25	1		10.		49.	81.	101.	113.
				TIME	16.25	15.33	15.08	14.75	14.67	14.58
			1		IN FEET *		.90	1.08	1 17	1 22
•				TIME	16.25	15.33	15.08	14.75	14.67	1.23 14.58
HYDROGRAPH AT	SUBBA	.34	1 .	FLOW	21.	57.	0.1	12:		
			•	TIME	13.00	13.00	81. 13.00	124. 12.92	151. 12.92	168. 12.92
								· · · · · · · · · · · · · · · · · · ·		

3. €∂	2 COMBINED AT	СРВА	.59	1	FLOW TIME	21. 13.00	57. 13.00	81. 13.00	124. 12.92	151. 12.92	168. 12.92
	HYDROGRAPH AT ►	RTBAAA	.50	1	FLOW TIME	13. 13.50	46. 13.50	67. 13.50	106. 13.50	130. 13.58	146. 13.58
	2 COMBINED AT	CPAA	1.09	1	FLOW TIME	32. 13.25	95. 13.17	135. 13.17	212. 13.17	260. 13.17	290. 13.17

*** NORMAL END OF HEC-1 ***

.· `		CULVERT DESIGN CALCULATIONS																
Description	Disc Qt (cfs)	harge 100yr (cfs)				Box/ Arch Wid.	Mat'l	Barrel/ Entrance	Length (ft)	Inver Inlet (ft)	t Elev. Outlet (ft)	Barrel Slope (%)	TW Depth (ft)	Allow HW (ft)	able HW/D	HV Qt	V/D Q100	Cor tro
	115th A	ve Draii	nage Im	provem	ents													HW
Alt. 1 - Detention			Т															
99th Ave Det. Basin outfall	283	283	2	1 40	1 :		505								T T		T	
107th Ave Det. Basin outfall	448	448			in.			headwall	260	968.00		1.69%	3.8	978.0	2.86	2.54	2.54	lic.
107th Ave Crossing (2 flow-by's)	533	533			in.		RCP	headwall	200	959.00		1.30%		966.0		1.50	1.50	
107th Ave farm road access	725	725			ft.	8	RCBC	Wingwall	200	958.00	956.40	0.80%		966.0		2.18	2.18	
Farm Rd @115th Ave & BFC	300	300			ft.	8	RCBC	Wingwall	30	959.15		0.50%		966.0		1.45	1.45	
Broadway Rd @ 115th Ave	962	962			ft.			Wingwall	30	950.00	946.00	13.33%	4.9	956.0		1.14	1.14	
arm Rd "1", S. of Broadway	962	962	2		ft.	10	RCBC	Wingwall	80	938.41	938.01	0.50%	6.5	945.0		1.27	1.27	
arm Rd "2", S. of Broadway	962	962	2		ft.	10	RCBC	Wingwall	35	935.89	935.71	0.51%		943.5		1.44	1.44	
Roeser Rd" - S. of Broadway	962	962	2		ft.	10	RCBC	Wingwall	35	935.24	935.06	0.51%		942.8		1.30	1.30	
arm Rd "3", S. of Broadway	962	962	2		ft.	10	RCBC	Wingwall	70	933.48	933.13	0.50%	6.9	941.5		1.35	1.35	
15th Ave Crossing	1684		2		ft.	10	RCBC	Wingwall	40	932.14	931.94	0.50%	6.6	940.0	1.31	1.32	1.32	
Southern Ave Crossing		1684	3		ft.	10	RCBC	Wingwall	160	931.00	930.40	0.38%	6.9	940.0		0.95	0.95	
I Mirage Rd Crossing	1600	1600	2	8	ft.	12	RCBC	Wingwall	80	928.20	928.13	0.09%	6.9	940.0	1.47	1.06	1.06	
Dysart Rd. Crossing	783 893	783	2		ft.	8	RCBC	Wingwall	80	926.00	925.50	0.63%	5.3	934.0		1.14	1.14	
yourt rid. Orossing	893	893	2	6	ft.	- 8	RCBC	Wingwall	80	917.80	917.50	0.37%	5.2	926.0		1.37	1.37	
N. O. Communication									+									
Alt. 2 - Conveyance																		
Broadway Rd @ 115th Ave	2450	2450	3	8		10	RCBC	Wingwall	80	936.55	936.41	0.17%	11.2	045.0	4 00	100	ļ	
arm Rd "1", S. of Broadway	2450	2450	3	8	ft.	10	RCBC	Wingwall	35	934.29	934.23	0.17%	11.0	945.0	1.06	1.68	1.68	
arm Rd "2", S. of Broadway	2450	2450	3	8		12 [RCBC	Wingwall	35	933.75	933.69	0.17%		943.5	1.15	1.66	1.66	
Roeser Rd" - S. of Broadway	2450	2450	3	8	ft.	12	RCBC	Wingwall	70	932.11	931.99	0.17%	9.9	942.8	1.13	1.43	1.43	
arm Rd "3", S. of Broadway	2450	2450	3	8	ft.	12	RCBC	Wingwall	40	931.01	930.94	0.17%	9.9	941.5	1.17	1.44	1.44	
15th Ave Crossing	3178	3178	4	8	ft.	10 [RCBC	Wingwall	160	930.44	930.30	0.17%	9.4	940.0	1.12	1.36	1.36	
outhern Ave Crossing	3100	3178	4	8	ft.	12 F	RCBC	Wingwall	80	928.20	928.13	0.09%	7.5	940.0	1.19	1.23	1.23	
I Mirage Rd Crossing	783	783	2	6	ft.	8 F	RCBC	Wingwall	80	926.00	925.50	0.63%	7.4	940.0	1.47	1.11	1.12	
ysart Rd. Crossing	893	893	2	6	ft.	8 F	RCBC	Wingwall	80	917.80	917.50		5.3	934.0	1.33	1.14	1.14	
										317.00	917.50	0.37%	5.2	926.0	1.37	1.37	1.37	듸
It. 3 - 10 yr. Conveyance																		\dashv
roadway Rd @ 115th Ave	1240	1240	2	- 6			1000											\dashv
arm Rd "1", S. of Broadway	1240	1240	2	8		815	ICRC /	Vingwall	80	937.00	936.60		10.2	946.0	1.13	1.51	1.51 T	-
arm Rd "2", S. of Broadway	1240	1240				- 8 F	CRC /	Vingwall	35	934.48	934.30		10.4	943.5		1.55	1.55 T	
Roeser Rd" - S. of Broadway	1240	1240	2	8 1				Vingwall	35	933.82	933.64	0.51%	9.7	942.8	1.13	1.36	1.36 T	
arm Rd "3", S. of Broadway	1240	1240	2			8 H	CRC	Vingwall	70	932.06	931.70	0.51%	9.5	941.1	1.13	1.41	1.41 T	
15th Ave Crossing	1593	1593	2	8 1		RIH	CBC	Vingwall	40	930.70	930.50	0.50%	8.5	939.7		1.31	1.31 T	
Mirage Rd Crossing	1593	1593		8 1				Vingwall	160	929.56	929.50	0.04%	6.8	938.6		1.18	1.18 (
ysart Rd Crossing	1593	1593	2	8 1		12 H	CBC	Vingwall	70	925.72	925.32	0.57%	6.1	934.7		1.04	1.04 (
	,,,,,,	1090		8 1	L.	12 R	CRCIA	Vingwall	70	917.69	917.29	0.57%	6.1	926.7		1.04		
					- 1	- 1		1	1	Т						1.07	1.04 10	J I

CHANNEL CALCULATIONS

Concrete Mannings n =
Earth Mannings n =
Grass Ret. Class =
Riprap Mannings n =

0.013 C 0.025 E D G

0.040 R

Subarea-	Length	Slope	Qt	1	Mati	SS [H:V]		В	Depth [ft]	Ocolo	Mal			Tractive Shear			
Reach	[ft]	[ft/ft]	[cfs]	į	IVIQUI	Lt				(cfs)	Vel. [fps]	Froude #	Avg [psf]	Max [psf]	FB [ft]	D+FB (ft)	Topwidth [ft]
Alt. 1 - Detention			T	╁													13
Buckeye Feeder Canal:			 	ť	_		 	 									
99th Ave to 107th Ave	5215	0.0012	283	╬	c	2	-	 			L						
107th Ave to 112th Ave	3681	0.0011		_	c	2			3.8	283		0.59	0.157			4.89	23.6
112th Ave to 115th Ave	2196	0.0010			c	2			4.9			0.66	0.222			6.36	39.4
Adjacent to 115th Ave	5030	0.0017			č	2			4.0				0.138			5.20	24.8
115th Ave to 117th Ave	1030	0.0010			č	2		10	4.9		9.90	0.79	0.323		1.61	6.51	36.1
New Outfall to River	3566	0.0009			Ö				6.9	1684	9.37	0.63	0.260	0.433	2.08	9.02	48.1
117th Ave to El Mirage Rd.	4000	0.0020			C	2	2	12	6.9	1600	8.89	0.59	0.235	0.390	2.04	8.99	48.0
El Mirage Rd to Dysart Rd.	5280	0.0020				2	2	4	5.3	783	10.13	0.78	0.348	0.661	1.72	7.02	32.1
Dysart Rd. to Agua Fria River	4400	0.0013				2	2	8	5.2	893	9.33	0.72	0.287	0.487	1.64	6.84	35.4
3447114111401	1 7700	0.0014	914	Н	<u>د</u> ا	2	2	8	5.3	914	9.15	0.70	0.274	0.467	1.66	7.01	36.0
Laterals:	1		-	₩													
107th Ave	1500	0.0008	725	H	_ 												
107th Ave Lateral -(flow-by)	1000	0.0008	250			2	2	8	5.5	725	7.01	0.53	0.159	0.273	1.56	7.02	36.1
115th Ave, N. of Southern	1000	0.0008			<u>c</u>	2	2	2	4.3	250	5.41	0.46	0.108	0.216	1.20	5.53	24.1
	1000	0.0013	1042	₩	$\stackrel{\smile}{-}$	2	2	14	4.9	1042	9.01	0.72	0.262	0.395	1.53	6.40	39.6
	 			#													
Alt. 2 - 100-yr Conveyance	<u> </u>			+													
Buckeye Feeder Canal:	T T			4													
107th Ave to 112th Ave	2600	0.0017	1001	4													
Adjacent to 115th Ave	7030	0.0017	1831			2	2	18	5.5	1831	11.40	0.85	0.399	0.587	1.89	7.42	47.7
115th Ave to 117th Ave	1030	0.0009	2450 3068			2	2	18	6.4	2450	12.35	0.86	0.450	0.682	2.20	8.63	52.5
New Outfall to Gila River	3646	0.0009				_2	2	26	7.4	3068	10.17	0.66	0.287	0.415	2.25	9.65	64.6
117th Ave to El Mirage Rd.	4000	0.0020	2979			_2	2	26	7.3	2979	10.09	0.66	0.283	0.409	2.22	9.50	64.0
El Mirage Rd to Dysart Rd.	5280	0.0020	783 893			2	2	4	5.3	783	10.13	0.78	0.348	0.661	1.72	7.02	32.1
Dysart Rd. to Agua Fria River	4400	0.0014		-	Ç	2	2	8	5.2	893	9.33	0.72	0.287	0.487	1.64	6.84	35.4
- year rise to rigue rite river	4400	0.0014	914	#	٠ +	_ 2	_2	8	5.3	914	9.15	0.70	0.274	0.467	1.66	7.01	36.0
Laterals:	 		!	:+													- 00.0
115th Ave, N. of Southern	1000	0.0010	1040	4													
Tout Ave, IV. of Southern	1000	0.0013	1042	4	'	2	2	14	4.9	1042	9.01	0.72	0.262	0.395	1.53	6.40	39.6
			!	4	_										- 1100	-01.10	00.0
				4													
Alt. 3 - 10-yr Conveyance				4													
Buckeye Feeder Canal:			 !	4-	_												
107th Ave to 112th Ave	2600	0.0017	4000	4	_					1							
Adjacent to 115th Ave	7030	0.0017		10		2	_2	10	5.1	1022	10.06	0.79	0.331	0.536	1.66	6.71	36.8
115th Ave to El Mirage Rd	5280	0.0017	1240			2	_2	10	5.6		10.58	0.79	0.357	0.589	1.82	7.38	39.5
El Mirage to Dysart Rd	5280	0.0010		C		2	2	12	6.8	1593	9.24	0.63	0.255	0.422	2.02	8.78	47.1
Er minage to Dysait rid	3260	0.0015	1593	10	'	2	_2	12	6.1	1593	10.72	0.76	0.353	0.573	1.98	8.10	44.4
Laterals:	 -			╀													77.4
115th Ave, N. of Southern	1000	0.0010	16.5	1-		L			$-\int$							-+	
TOUT AVE, IV. OF SOUTHBITE	1000	0.0013	495	ΙC	<u>-</u>	_2	_2	4	4.8	495	7.68	0.62	0.207	0.386	1.42	6.18	28.7
			!!	L												<u> </u>	20.7
	<u>-</u>		!	L	L				T					 +			

Cost Summary - 115th Avenue Drainage Improvements

5				Detention	Ait 2 - 1	00-yr Conv.	Alt 3 - 1	0-yr Conv.
Description	Unit	Unit Price	_Qty	Total	Qty	Total	Qty	Total
Land Acquisition	AC	\$25,000.00	118	\$2,950,000	13	\$325,000	5	\$125,000
Detention Basin Excavation	CY	\$2.00	805171	\$1,610,342	0	\$0	Ō	\$0
Channel Excavation	CY	\$2.50	89660	\$224,150	246089	\$615,223	104866	\$262,165
Remove Exist. Culverts	LS	\$1.00	40000	\$40,000	40000	\$40,000	32000	\$32,000
Culverts	LS	\$1.00	728760	\$728,760	1200569	\$1,200,569	851419	\$851,419
Channel Lining	SF	\$1.40	938660	\$1,314,124	1364211	\$1,909,895	1157314	\$1,620,240
Detention Basin outfall	LS	\$717,600.00	1	\$717,600	0	\$0	0	\$0
Floodproofing	LS	\$1.00	0	\$0	0	\$0	624200	\$624,200
SUB-TOTAL				\$7,584,976		\$4,090,687		\$3,515,024
CONTINGENCY		15%		\$1,137,746	_	\$613,603		527253.54
TOTAL				\$8,722,722	•	\$4,704,290	•	\$4.042.277